(本小題滿分12分)
設(shè)函數(shù)
。
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ)如果對任何
,都有
,求
的取值范圍。
(Ⅰ)
在每一個區(qū)間
(
)是增函數(shù),
在每一個區(qū)間
(
)是減函數(shù)。
(Ⅱ)
(Ⅰ)
。 2分
當(dāng)
(
)時,
,即
;
當(dāng)
(
)時,
,即
。
因此
在每一個區(qū)間
(
)是增函數(shù),
在每一個區(qū)間
(
)是減函數(shù)。 6分
(Ⅱ)令
,則
。
故當(dāng)
時,
。
又
,所以當(dāng)
時,
,即
。 9分
當(dāng)
時,令
,則
。
故當(dāng)
時,
。
因此
在
上單調(diào)增加。
故當(dāng)
時,
,
即
。
于是,當(dāng)
時,
。
當(dāng)
時,有
。
因此,
的取值范圍是
。 12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=x3-3ax2+2bx在點x=1處有極小值-1,試確定a,b的值,并求出f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
的最大值為M。
(1)當(dāng)
時,求M的值。
(2)當(dāng)
取遍所有實數(shù)時,求M的最小值
;
(以下結(jié)論可供參考:對于
,當(dāng)
同號時取等號)
(3)對于第(2)小題中的
,設(shè)數(shù)列
滿足
,求證:
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
m為實數(shù),函數(shù)
,
.
(1)若
≥4,求
m的取值范圍;
(2)當(dāng)
m>0時,求證
在
上是單調(diào)遞增函數(shù);
(3)若
對于一切
,不等式
≥1恒成立,求實數(shù)
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
的圖象經(jīng)過點
,且在
處的切線方程是
(1) 求
的解析式;
(2) 點
是直線
上的動點,自點
作函數(shù)
的圖象的兩條切線
、
(點
、
為切點),求證直線
經(jīng)過一個定點,并求出定點的坐標。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=
(1)若h(x)=f(x)-g(x)存在單調(diào)增區(qū)間,求a的取值范圍;
(2)是否存在實數(shù)a>0,使得方程
在區(qū)間
內(nèi)有且只有兩個不相等的實數(shù)根?若存在,求出a的取值范圍?若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知:函數(shù)
(
是常數(shù))是奇函數(shù),且滿足
,
(Ⅰ)求
的值;
(Ⅱ)試判斷函數(shù)
在區(qū)間
上的單調(diào)性并說明理由;
(Ⅲ)試求函數(shù)
在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知函數(shù)
的圖像如右圖所示(其中
是函數(shù)
的導(dǎo)函數(shù)),下面四個圖像中
的圖像大致是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
是偶函數(shù),當(dāng)
時.
(a為實數(shù)).
(1)若
在
處有極值,求a的值。(6分)
(2)若
在
上是減函數(shù),求a的取值范圍。(8分)
查看答案和解析>>