如圖,是圓的直徑,是延長(zhǎng)線上的一點(diǎn),是圓的割線,過點(diǎn)作的垂線,交直線于點(diǎn),交直線于點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為.
(1)求證:四點(diǎn)共圓;(2)若,求的長(zhǎng).
(1)詳見解析;(2)12
解析試題分析:(1)根據(jù)四邊形的外角等于內(nèi)角的對(duì)角時(shí)四點(diǎn)共圓,證問題即可得證。(2)由(1)可知四點(diǎn)共圓,則可根據(jù)切割弦定理求邊長(zhǎng)。
試題解析:(1)
證明:連結(jié),∵是圓的直徑,
∴,
在和中,
又∵ ∴
∴四點(diǎn)共圓。
(2)∵四點(diǎn)共圓,∴
∵是圓的切線,∴ ∴
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5f/e/bzveu2.png" style="vertical-align:middle;" /> ∴
∴
考點(diǎn):1四點(diǎn)共圓;2切割弦定理。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是的內(nèi)接三角形,PA是圓O的切線,切點(diǎn)為A,PB交AC于點(diǎn)E,交圓O于點(diǎn)D,PA=PE,,PD=1,DB=8.
(1)求的面積;
(2)求弦AC的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知和相交于A、B兩點(diǎn),過A點(diǎn)作切線交于點(diǎn)E,連接EB并延長(zhǎng)交于點(diǎn)C,直線CA交于點(diǎn)D,
(1)當(dāng)點(diǎn)D與點(diǎn)A不重合時(shí)(如圖1),證明:ED2=EB·EC;
(2)當(dāng)點(diǎn)D與點(diǎn)A重合時(shí)(如圖2),若BC=2,BE=6,求的直徑長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知C點(diǎn)在圓O直徑BE的延長(zhǎng)線上,CA切圓O于A點(diǎn),∠ACB的平分線CD交AE于點(diǎn)F,交AB于點(diǎn)D.
(1)求∠ADF的度數(shù);
(2)若AB=AC,求AC∶BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,E是⊙O內(nèi)兩弦AB和CD的交點(diǎn),直線EF∥CB,交AD的延長(zhǎng)線于F,F(xiàn)G切⊙O于G.求證:
(1)△DFE∽△EFA;
(2)EF=FG.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是圓O的直徑,D,E為圓上位于AB異側(cè)的兩點(diǎn),連接BD并延長(zhǎng)至點(diǎn)C,使BD=DC,連接AC,AE,DE.
求證:∠E=∠C.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com