【題目】在最新公布的湖南新高考方案中,“”模式要求學生在語數外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉換后計入高考總分.相應地,高校在招生時可對特定專業(yè)設置具體的選修科目要求.雙超中學高一年級有學生1200人,現從中隨機抽取40人進行選科情況調查,用數字1~6分別依次代表歷史、物理、化學、生物、地理、政治6科,得到如下的統(tǒng)計表:
序號 | 選科情況 | 序號 | 選科情況 | 序號 | 選科情況 | 序號 | 選科情況 |
1 | 134 | 11 | 236 | 21 | 156 | 31 | 235 |
2 | 235 | 12 | 234 | 22 | 235 | 32 | 236 |
3 | 235 | 13 | 145 | 23 | 245 | 33 | 235 |
4 | 145 | 14 | 135 | 24 | 235 | 34 | 135 |
5 | 156 | 15 | 236 | 25 | 256 | 35 | 156 |
6 | 245 | 16 | 236 | 26 | 156 | 36 | 236 |
7 | 256 | 17 | 156 | 27 | 134 | 37 | 156 |
8 | 235 | 18 | 236 | 28 | 235 | 38 | 134 |
9 | 235 | 19 | 145 | 29 | 246 | 39 | 235 |
10 | 236 | 20 | 235 | 30 | 156 | 40 | 245 |
(1)雙超中學規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當且僅當一門科目的選課班級總數為奇數時,允許這門科目的1位老師只教1個班).已知雙超中學高一年級現有化學、生物科目教師每科各8人,用樣本估計總體,則化學、生物兩科的教師人數是否需要調整?如果需要調整,各需增加或減少多少人?
(2)請創(chuàng)建列聯表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現從雙超中學高一新生中隨機抽取3人,設具備高校專業(yè)報名資格的人數為,用樣本的頻率估計概率,求的分布列與期望.
【答案】(1)不需調整(2)列聯表見解析;有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關(3)詳見解析
【解析】
(1)可估計高一年級選修相應科目的人數分別為720,330,推理得對應開設選修班的數目分別為15,7.推理知生物科目需要減少4名教師,化學科目不需要調整.(2)根據列聯表計算觀測值,根據臨界值表可得結論.(3)經統(tǒng)計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數為12,頻率為.用頻率估計概率,則,根據二項分布概率公式可得分布列和數學期望.
(1)經統(tǒng)計可知,樣本40人中,選修化學、生物的人數分別為24,11,則可估計高一年級選修相應科目的人數分別為720,330.根據每個選修班最多編排50人,且盡量滿額編班,得對應開設選修班的數目分別為15,7.現有化學、生物科目教師每科各8人,根據每位教師執(zhí)教2個選修班,當且僅當一門科目的選課班級總數為奇數時,允許這門科目的一位教師執(zhí)教一個班的條件,知生物科目需要減少4名教師,化學科目不需要調整.
(2)根據表格中的數據進行統(tǒng)計后,制作列聯表如下:
選物理 | 不選物理 | 合計 | |
選化學 | 19 | 5 | 24 |
不選化學 | 6 | 10 | 16 |
合計 | 25 | 15 | 40 |
則,
有的把握判斷學生”選擇化學科目”與“選擇物理科目”有關.
(3)經統(tǒng)計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數為12,頻率為.
用頻率估計概率,則,分布列如下:
0 | 1 | 2 | 3 | |
0.343 | 0.441 | 0.189 | 0.027 |
數學期望為.
科目:高中數學 來源: 題型:
【題目】某廠加工的零件按箱出廠,每箱有10個零件,在出廠之前需要對每箱的零件作檢驗,人工檢驗方法如下:先從每箱的零件中隨機抽取4個零件,若抽取的零件都是正品或都是次品,則停止檢驗;若抽取的零件至少有1個至多有3個次品,則對剩下的6個零件逐一檢驗.已知每個零件檢驗合格的概率為0.8,每個零件是否檢驗合格相互獨立,且每個零件的人工檢驗費為2元.
(1)設1箱零件人工檢驗總費用為元,求的分布列;
(2)除了人工檢驗方法外還有機器檢驗方法,機器檢驗需要對每箱的每個零件作檢驗,每個零件的檢驗費為1.6元.現有1000箱零件需要檢驗,以檢驗總費用的數學期望為依據,在人工檢驗與機器檢驗中,應該選擇哪一個?說明你的理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓恒過點,且與直線相切.
(1)求圓心的軌跡的方程;
(2)設是軌跡上橫坐標為2的點,的平行線交軌跡于,兩點,交軌跡在處的切線于點,問:是否存在實常數使,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了實現中華民族偉大復興之夢,把我國建設成為富強民主文明和諧美麗的社會主義現代化強國,黨和國家為勞動者開拓了寬廣的創(chuàng)造性勞動的舞臺.借此“東風”,某大型現代化農場在種植某種大棚有機無公害的蔬菜時,為創(chuàng)造更大價值,提高畝產量,積極開展技術創(chuàng)新活動.該農場采用了延長光照時間和降低夜間溫度兩種不同方案.為比較兩種方案下產量的區(qū)別,該農場選取了40間大棚(每間一畝),分成兩組,每組20間進行試點.第一組采用延長光照時間的方案,第二組采用降低夜間溫度的方案.同時種植該蔬菜一季,得到各間大棚產量數據信息如下圖:
(1)如果你是該農場的負責人,在只考慮畝產量的情況下,請根據圖中的數據信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;
(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時間的方案,光照設備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設備的每年成本為0.2千元/畝.已知該農場共有大棚100間(每間1畝),農場種植的該蔬菜每年產出兩次,且該蔬菜市場的收購均價為1千元/千斤.根據題中所給數據,用樣本估計總體,請計算在兩種不同的方案下,種植該蔬菜一年的平均利潤;
(3)農場根據以往該蔬菜的種植經驗,認為一間大棚畝產量超過5.25千斤為增產明顯.在進行夜間降溫試點的20間大棚中隨機抽取3間,記增產明顯的大棚間數為,求的分布列及期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新高考方案規(guī)定,普通高中學業(yè)水平考試分為合格性考試(合格考)和選擇性考試(選擇考).其中“選擇考”成績將計入高考總成績,即“選擇考”成績根據學生考試時的原始卷面分數,由高到低進行排序,評定為、、、、五個等級.某試點高中2018年參加“選擇考”總人數是2016年參加“選擇考”總人數的2倍,為了更好地分析該校學生“選擇考”的水平情況,統(tǒng)計了該校2016年和2018年“選擇考”成績等級結果,得到如下圖表:
針對該!斑x擇考”情況,2018年與2016年比較,下列說法正確的是( )
A. 獲得A等級的人數減少了B. 獲得B等級的人數增加了1.5倍
C. 獲得D等級的人數減少了一半D. 獲得E等級的人數相同
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:x2=2y,過點(0,2)作直線l交拋物線于A、B兩點.
(1)證明:OA⊥OB;
(2)若直線l的斜率為1,過點A、B分別作拋物線的切線l1,l2,若直線l1,l2,相交于點P,直線l1,l2交x軸分別于點M,N,求△MNP的外接圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班圖書角有文學名著類圖書5本,學科輔導書類圖書3本,其它類圖書2本,共10本不同的圖書,該班從圖書角的10本不同圖書中隨機挑選3本不同圖書參加學校活動.
(1)求選出的三本圖書來自于兩個不同類別的概率;
(2)設隨機變量X表示選出的3本圖書中,文學名著類本數與學科輔導類本數差的絕對值,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年10月1日我國隆重紀念了建國70周年,期間進行了一系列大型慶祝活動,極大地激發(fā)了全國人民的愛國熱情.某校高三學生也投入到了這場愛國活動中,他(她)們利用周日休息時間到社區(qū)做義務宣講員,學校為了調查高三男生和女生周日的活動時間情況,隨機抽取了高三男生和女生各40人,對他(她)們的周日活動時間進行了統(tǒng)計,分別得到了高三男生的活動時間(單位:小時)的頻數分布表和女生的活動時間(單位:小時)的頻率分布直方圖.(活動時間均在內)
活動時間 | ||||||
頻數 | 8 | 10 | 7 | 9 | 4 | 2 |
(1)根據調查,試判斷該校高三年級學生周日活動時間較長的是男生還是女生?并說明理由;
(2)在被抽取的80名高三學生中,從周日活動時間在內的學生中抽取2人,求恰巧抽到1男1女的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了保障某治療新冠肺炎藥品的主要藥理成分在國家藥品監(jiān)督管理局規(guī)定的值范圍內,武漢某制藥廠在該藥品的生產過程中,檢驗員在一天中按照規(guī)定從該藥品生產線上隨機抽取20件產品進行檢測,測量其主要藥理成分含量(單位:mg).根據生產經驗,可以認為這條藥品生產線正常狀態(tài)下生產的產品的主要藥理成分含量服從正態(tài)分布N(μ,σ2).在一天內抽取的20件產品中,如果有一件出現了主要藥理成分含量在(μ﹣3σ,μ+3σ)之外的藥品,就認為這條生產線在這一天的生產過程可能出現了異常情況,需對本次的生產過程進行檢查.
(1)下面是檢驗員在2月24日抽取的20件藥品的主要藥理成分含量:
10.02 | 9.78 | 10.04 | 9.92 | 10.14 | 10.04 | 9.22 | 10.13 | 9.91 | 9.95 |
10.09 | 9.96 | 9.88 | 10.01 | 9.98 | 9.95 | 10.05 | 10.05 | 9.96 | 10.12 |
經計算得xi=9.96,s0.19;其中xi為抽取的第i件藥品的主要藥理成分含量,i=1,2,…,20.用樣本平均數作為μ的估計值,用樣本標準差s作為σ的估計值,利用估計值判斷是否需對本次的生產過程進行檢查?
(2)假設生產狀態(tài)正常,記X表示某天抽取的20件產品中其主要藥理成分含量在(μ﹣3σ,μ+3σ)之外的藥品件數,求/span>P(X=1)及X的數學期望.
附:若隨機變量Z服從正態(tài)分布N(μ,σ2),則P(μ﹣3σ<Z<μ+3σ)≈0.9974,0.997419≈0.95.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com