【題目】某商場(chǎng)出售兩款型號(hào)不同的手機(jī),由于市場(chǎng)需求發(fā)生變化,第一款手機(jī)連續(xù)兩次提價(jià)10%,第二款手機(jī)連續(xù)兩次降價(jià)10%,結(jié)果都以1210元出售.
(1)求第一款手機(jī)的原價(jià);
(2)若該商場(chǎng)同時(shí)出售兩款手機(jī)各一部,求總售價(jià)與總原價(jià)之間的差額.(結(jié)果精確到整數(shù))
【答案】(1)1000元(2)
【解析】試題分析:建立一次函數(shù)模型進(jìn)行求解.(1)設(shè)第一款手機(jī)原價(jià)為 ,根據(jù)題意寫出方程 解得 .(2)設(shè)第二款手機(jī)原價(jià)為 ,根據(jù)題意寫出方程 ,解得 ,進(jìn)而可得所求為 .
試題解析:
解:(1)設(shè)第一款手機(jī)原價(jià)為a,則a(1+10%)2=1210,
解得a= =1000,所以第一款手機(jī)原價(jià)為1000元.
(2)設(shè)第二款手機(jī)原價(jià)為b,則b(1-10%)2=1210,
解得 ≈1494元,由(1)知,第一款手機(jī)原價(jià)為1000元,
所以總售價(jià)與總原價(jià)之間的差額為1210×2-1494-1000=-74.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面是邊長為a的正方形,側(cè)棱PD=a,PA=PC=a,
(1)求證:PD⊥平面ABCD;
(2)求證:平面PAC⊥平面PBD;
(3)求二面角P-AC-D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.718 28…為自然對(duì)數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),證明:e﹣2<a<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
()若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.
()是否存在常數(shù),當(dāng)時(shí), 在值域?yàn)閰^(qū)間且?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為 與p,且乙投球2次均未命中的概率為 .
(Ⅰ)求乙投球的命中率p;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)將直線l: (t為參數(shù))化為極坐標(biāo)方程;
(2)設(shè)P是(1)中直線l上的動(dòng)點(diǎn),定點(diǎn)A( , ),B是曲線ρ=﹣2sinθ上的動(dòng)點(diǎn),求|PA|+|PB|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)想通過做廣告來提高銷售額,經(jīng)預(yù)測(cè)可知本企業(yè)產(chǎn)品的廣告費(fèi)x(單位:百萬元)與銷售額y(單位:百萬元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
由表中的數(shù)據(jù)得線性回歸方程為 = x+ ,其中 =6.5,由此預(yù)測(cè)當(dāng)廣告費(fèi)為7百萬元時(shí),銷售額為萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=4 x的焦點(diǎn)為F,A、B為拋物線上兩點(diǎn),若 =3 ,O為坐標(biāo)原點(diǎn),則△AOB的面積為( )
A.8
B.4
C.2
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com