定義在R上的函數(shù)f(x)=ln(x2+1)+|x|,不等式f(2x-1)>f(x+1)的解為________.

{x|x<0,或x>2 }
分析:由題意可得函數(shù)f(x)是偶函數(shù),且在(0,+∞)上是增函數(shù).由不等式可得|2x-1|>|x+1|,由此求得不等式的解集.
解答:由于定義在R上的函數(shù)f(x)=ln(x2+1)+|x|滿足f(-x)=f(x),故此函數(shù)是偶函數(shù),且在(0,+∞)上是增函數(shù).
由不等式f(2x-1)>f(x+1)可得|2x-1|>|x+1|,∴|2x-1|2>|x+1|2,化簡得x(x-2)>0,解得 x<0,或x>2.
故不等式f(2x-1)>f(x+1)的解為{x|x≤-1,或x>2 },
故答案為 {x|x<0,或x>2 }.
點(diǎn)評:本題主要考查函數(shù)的奇偶性、單調(diào)性的應(yīng)用,絕對值不等式的解法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時(shí),f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當(dāng)x∈(0,4)時(shí),f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個(gè)最低點(diǎn)之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達(dá)式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點(diǎn)的區(qū)間是(  )

查看答案和解析>>

同步練習(xí)冊答案