(2011•東城區(qū)一模)空間點到平面的距離如下定義:過空間一點作平面的垂線,該點和垂足之間的距離即為該點到平面的距離.已知平面α,β,γ兩兩互相垂直,點A∈α,點A到β,γ的距離都是3,點P是α上的動點,滿足p到β的距離是到p到點A距離的2倍,則點P的軌跡上的點到γ的距離的最小值為( 。
分析:原題等價于在直角坐標(biāo)系中,點A(3,3),P第一象限內(nèi)的動點,滿足P到Y(jié)軸的距離是到P到點A 距離的2倍,則點P的軌跡上的點到x軸的距離的最小值是多少.
解答:解:設(shè)P(x,y),
P的軌跡方程為x=2
(x-3)2+(y-3)2
,
x2=4(x-3)2+4(y-3)2,
(y-3)2=
1
4
[x2-4(x-3)2]-
3
4
x2+6x-9
,
當(dāng)x=4時,最大值為3
∵(y-3)2=3,∴y=3+
3
,或y=3-
3

∴點P 的軌跡上的點到γ 的距離的最小值是3-
3

故選D.
點評:本題考查平面和平面間的位置關(guān)系,解題時要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進行等價轉(zhuǎn)化,把空間幾何問題巧妙地轉(zhuǎn)化為平面幾何問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)一模)過拋物線y2=2px(p>0)的焦點作傾斜角為60°的直線,與拋物線分別交于A,B兩點(點A在x軸上方),
|AF||BF|
=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)一模)已知α∈(
π
2
,π)
,tan(α+
π
4
)=
1
7
,那么sinα+cosα的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)一模)已知函數(shù)y=sin(ωx+φ)(ω>0, 0<φ≤
π
2
)
的部分圖象如圖所示,則點P(ω,φ)的坐標(biāo)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)一模)從某地高中男生中隨機抽取100名同學(xué),將他們的體重(單位:kg)數(shù)據(jù)繪制成頻率分布直方圖(如圖).由圖中數(shù)據(jù)可知體重的平均值為
64.5
64.5
kg;若要從體重在[60,70),[70,80),[80,90]三組內(nèi)的男生中,用分層抽樣的方法選取12人參加一項活動,再從這12人選兩人當(dāng)正、負(fù)隊長,則這兩人身高不在同一組內(nèi)的概率為
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)一模)對于n∈N*(n≥2),定義一個如下數(shù)陣:Ann=
a11a12a1n
a21a22a2n
an1an2ann

其中對任意的1≤i≤n,1≤j≤n,當(dāng)i能整除j時,aij=1;當(dāng)i不能整除j時,aij=0.
(Ⅰ)當(dāng)n=4時,試寫出數(shù)陣A44;
(Ⅱ)設(shè)t(j)=
n
i=1
aij=a1j+a2j+…+anj
.若[x]表示不超過x的最大整數(shù),
求證:
n
j=1
t(j)
=
n
i=1
n
i
 ]

查看答案和解析>>

同步練習(xí)冊答案