在三棱錐M-ABC中,CM⊥平面ABC,MA=MB,NA=NB=NC

(Ⅰ)求證:AM⊥BC;

(Ⅱ)若∠AMB=30°,求二面角M-AB-C的余弦值。

證明(Ⅰ)

外接圓的圓心,可得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐M-ABC中,AB=2AC=2,MA=MB=
5
2
,AB=4AN,AB⊥AC,平面MAB⊥平面ABC,S為BC中點
(1)證明:CM⊥SN;
(2)求SN與平面CMN所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•青島一模)在三棱錐M-ABC中,CM⊥平面ABC,MA=MB,NA=NB=NC.
(Ⅰ)求證:AM⊥BC;
(Ⅱ)若∠AMB=60°,求直線AM與CN所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱錐M-ABC中,AB=2AC=2,數(shù)學公式,AB=4AN,AB⊥AC,平面MAB⊥平面ABC,S為BC中點
(1)證明:CM⊥SN;
(2)求SN與平面CMN所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐M-ABC中,CM⊥平面ABC,MA=MB,NA=NB=NC

(Ⅰ)求證:AM⊥BC;

(Ⅱ)若∠AMB=60°,求直線AM與CN所成的角。

查看答案和解析>>

科目:高中數(shù)學 來源:2007年山東省青島市高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

在三棱錐M-ABC中,CM⊥平面ABC,MA=MB,NA=NB=NC.
(Ⅰ)求證:AM⊥BC;
(Ⅱ)若∠AMB=60°,求直線AM與CN所成的角.

查看答案和解析>>

同步練習冊答案