已知函數(shù).
(1)當時,求曲線在點處的切線方程;
(2)對任意,在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
(1)(2)
解析試題分析:(Ⅰ)解:當時, , 2分
,又 4分
所以曲線在點處的切線方程為
即 6分
(Ⅱ)= 8分
記,則,
在區(qū)間是增函數(shù),在區(qū)間是減函數(shù),
故最小值為 -10分
因為對任意,在區(qū)間上是增函數(shù).
所以在上是增函數(shù), 12分
當即時,顯然成立
當
綜上 15分
考點:導數(shù)的幾何意義與函數(shù)單調(diào)性
點評:第一問利用導數(shù)的幾何意義:函數(shù)在某一點處的導數(shù)值等于該點處的切線斜率,可求得切線斜率,進而得到切線方程;第二問也可用參變量分離法分離,通過求函數(shù)最值求的取值范圍
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的導數(shù)為實數(shù),.
(Ⅰ)若在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點且與曲線相切的直線的方程;
(Ⅲ)設函數(shù),試判斷函數(shù)的極值點個數(shù)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,,直線與函數(shù)、的圖象都相切,且與函數(shù)的圖象的切點的橫坐標為.
(Ⅰ)求直線的方程及的值;
(Ⅱ)若(其中是的導函數(shù)),求函數(shù)的最大值;
(Ⅲ)當時,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的極值點與極值;
(2)設為的導函數(shù),若對于任意,且,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,().
(1)求函數(shù)的極值;
(2)已知,函數(shù), ,判斷并證明的單調(diào)性;
(3)設,試比較與,并加以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ln x-.
(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設曲線在點處的切線斜率為,且,對一切實數(shù),不等式恒成立.
(1) 求的值;
(2) 求函數(shù)的表達式;
(3) 求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若p=2,求曲線處的切線方程;
(2)若函數(shù)在其定義域內(nèi)是增函數(shù),求正實數(shù)p的取值范圍;
(3)設函數(shù),若在[1,e]上至少存在一點,使得成立,求實
數(shù)p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的圖像在點處的切線方程為.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設是[)上的增函數(shù), 求實數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com