(2013•肇慶一模)(幾何證明選講選做題)
如圖所示,已知圓O的半徑為2,從圓O外一點A引切線AB和割線AD,C為AD與圓O的交點,圓心O到AD的距離為
3
AB=
15
,則AC的長為
3
3
分析:利用圓心到直線的距離,求出CD的值,然后利用圓的切割線定理求解即可.
解答:解:因為圓O的切線AB和割線AD,所以由切割線定理可知AB2=AC•AD,
圓心O到AD的距離為
3
,圓O的半徑為2,
所以CD=2
22-(
3
)2
=2,AB=
15
,
所以AB2=AC•(AC+CD),即 15=AC•(AC+2),
解得AC=3,
故答案為:3.
點評:本題考查弦心距、半徑、半弦長滿足的勾股定理以及切割線定理的應(yīng)用,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•肇慶一模)已知等差數(shù)列{an},滿足a3+a9=8,則此數(shù)列的前11項的和S11=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•肇慶一模)某市電視臺為了宣傳舉辦問答活動,隨機對該市15~65歲的人群抽樣了x•46%=230人,回答問題統(tǒng)計結(jié)果如圖表所示.
組號 分組 回答正確
的人數(shù)
回答正確的人數(shù)
占本組的概率
第1組 [15,25) 5 0.5
第2組 [25,35) a 0.9
第3組 [35,45) 27 x
第4組 [45,55) B 0.36
第5組 [55,65) 3 y
(Ⅰ)分別求出a,b,x,y的值;
(Ⅱ)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?
(Ⅲ)在(Ⅱ)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求:所抽取的人中第2組至少有1人獲得幸運獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•肇慶一模)已知函數(shù)f(x)=Asin(4x+φ)(A>0,0<φ<π)在x=
π
16
時取得最大值2.
(1)求f(x)的最小正周期;
(2)求f(x)的解析式;
(3)若α∈[-
π
2
,0]
,f(
1
4
α+
π
16
)=
6
5
,求sin(2α-
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•肇慶一模)(坐標系與參數(shù)方程選做題) 
已知直線l1=
x=1+3t
y=2-4t
(t為參數(shù))與直線l2:2x-4y=5相交于點B,又點A(1,2),則|AB|=
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•肇慶一模)已知Sn是數(shù)列{an}的前n項和,且a1=1,nan+1=2Sn(n∈N*)
(1)求a2,a3,a4的值;
(2)求數(shù)列{an}的通項an;
(3)設(shè)數(shù)列{bn}滿足b1=
1
2
bn+1=
1
ak
b
2
n
+bn
,求證:當n≤k時有bn<1.

查看答案和解析>>

同步練習冊答案