設a、b∈R+,且a≠b,P=
a2
b
+
b2
a
,Q=a+b,則(  )
分析:利用“作差法”即可比較出大。
解答:解:∵a、b∈R+,且a≠b,
∴P-Q=
a2
b
-b+
b2
a
-a
=
(a2-b2)(a-b)
ab
=
(a-b)2(a+b)
ab
>0,
∴P>Q.
故選A.
點評:熟練掌握“作差法”比較數(shù)的大小及不等式的性質是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設a,b∈R+,且a+b=2,則
1
1+an
+
1
1+bn
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a,b∈R,且a≠2,若定義在區(qū)間(-b,b)內的函數(shù)f(x)=lg
1+ax1+2x
是奇函數(shù),則a+b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b∈R,且a≠2,若定義在區(qū)間(
b-3
2
,a+b)
內的函數(shù)f(x)=lg
1+ax
1+2x
是奇函數(shù),2a+b的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b∈R,且a>b,則下面不等式一定成立的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b∈R,且a-b=2則3a+(
1
3
)b
的最小值是( 。

查看答案和解析>>

同步練習冊答案