【題目】已知函數(shù).

(1)若函數(shù)在定義域內(nèi)不單調(diào),求實(shí)數(shù)的取值范圍;

(2)若函數(shù)在區(qū)間內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(3)若,求證: .

【答案】(1)23見(jiàn)解析

【解析】試題分析:

(1)對(duì)函數(shù)求導(dǎo)有,則原問(wèn)題等價(jià)于方程有大于零的實(shí)根,結(jié)合二次方程根的分布理論可得

(2)原問(wèn)題等價(jià)于在區(qū)間內(nèi)恒成立,結(jié)合均值不等式的結(jié)論可得

(3)當(dāng)時(shí),不等式顯然成立,當(dāng),等價(jià)轉(zhuǎn)化后結(jié)合(2)的結(jié)論即可證得題中的結(jié)論.

試題解析:

1的定義域?yàn)?/span>

因?yàn)?/span>在定義域內(nèi)不單調(diào),所以方程有大于零的實(shí)根,

函數(shù)的圖像經(jīng)過(guò)點(diǎn),

,

2函數(shù)在區(qū)間內(nèi)單調(diào)遞增,

在區(qū)間內(nèi)恒成立,即在區(qū)間內(nèi)恒成立

時(shí)取得最小值,

3)當(dāng)時(shí),不等式顯然成立,

當(dāng),只需證明,令,則只需證明成立,由(2)可知上是增函數(shù),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),是常數(shù)

Ⅰ)求曲線在點(diǎn)處的切線方程,并證明對(duì)任意,切線經(jīng)過(guò)定點(diǎn);

Ⅱ)證明:時(shí),有兩個(gè)零點(diǎn)、,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)時(shí)都取得極值.(1)求的值;(2)若對(duì), 恒成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)若是橢圓上的動(dòng)點(diǎn),求線段中點(diǎn)的軌跡方程;

(3)過(guò)原點(diǎn)的直線交橢圓于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃購(gòu)買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買這種零件作為備件,每個(gè)200.在機(jī)器使用期間,如果備件不足再購(gòu)買,則每個(gè)500.現(xiàn)需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

x表示1臺(tái)機(jī)器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺(tái)機(jī)器在購(gòu)買易損零件上所需的費(fèi)用(單位:元), 表示購(gòu)機(jī)的同時(shí)購(gòu)買的易損零件數(shù).

=19,yx的函數(shù)解析式;

若要求需更換的易損零件數(shù)不大于的頻率不小于0.5,的最小值;

假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買19個(gè)易損零件,或每臺(tái)都購(gòu)買20個(gè)易損零件,分別計(jì)算這100臺(tái)機(jī)器在購(gòu)買易損零件上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購(gòu)買1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買19個(gè)還是20個(gè)易損零件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(ax2bxc)ex(a>0)的導(dǎo)函數(shù)yf′(x)的兩個(gè)零點(diǎn)為-3和0.

(1)求f(x)的單調(diào)區(qū)間;

(2)若f(x)的極小值為-1,求f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)滿足f(xy)=f(xf(y)且f(1)=.

(1)當(dāng)n∈N*時(shí),求f(n)的表達(dá)式;

(2)設(shè)ann·f(n),n∈N*,求證:a1a2a3+…+an<2;

(3)設(shè)bn=(9-n) n∈N*,Sn為{bn}的前n項(xiàng)和,當(dāng)Sn最大時(shí),求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求的最小值;

(2)求證:x>0時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題分)

已知函數(shù),若存在,使得,則稱是函數(shù)的一個(gè)不動(dòng)點(diǎn),設(shè)二次函數(shù)

)當(dāng) 時(shí),求函數(shù)的不動(dòng)點(diǎn).

)若對(duì)于任意實(shí)數(shù),函數(shù)恒有兩個(gè)不同的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.

)在()的條件下,若函數(shù)的圖象上 兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且直線是線段的垂直平分線,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案