已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0
(1)求證:直線l恒過定點(diǎn);
(2)設(shè)l與圓交于A、B兩點(diǎn),若|AB|=
17
,求直線l的方程.
分析:(1)由于m的任意性,把直線l的方程化為(x-1)m-y+1=0,令x-1=0和-y+1=0求解;
(2)利用弦長先求出弦心距,再由圓心到直線的距離求出m的值.
解答:(1)證明:把直線l的方程化為(x-1)m-y+1=0,由于m的任意性,
x-1=0
-y+1=0
,解得x=1,y=1
∴直線l恒過定點(diǎn)(1,1).
(2)解:由題意知,圓心C(0,1),半徑R=
5
;
∵l與圓交于A、B兩點(diǎn)且|AB|=
17
,
∴圓心C到l得距離d=
R2-(
1
2
|AB|)
2
=
5-
17
4
=
3
2
,
∵直線l:mx-y+1-m=0
∴d=
|0-1+1-m|
m2+1
=
3
2
,解得m=±
3
,
∴所求直線l為
3
x-y+1-
3
=0,或
3
x+y-1-
3
=0
點(diǎn)評:本題考點(diǎn)是直線過定點(diǎn)問題轉(zhuǎn)化為方程恒成立問題,以及圓與直線相交時(shí)半徑、弦長的一半和弦心距的關(guān)系和點(diǎn)到直線的距離公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+(y-3)2=4,一動直線l過A (-1,O)與圓C相交于P、Q兩點(diǎn),M是PQ中點(diǎn),l與直線x+3y+6=0相交于N,則|AM|•|AN|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+(y-2)2=1
(1)求與圓C相切且在坐標(biāo)軸上截距相等的直線方程;
(2)和圓C外切且和直線y=1相切的動圓圓心軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0,
(1)求證對m∈R,直線l和圓C總相交;
(2)設(shè)直線l和圓C交于A、B兩點(diǎn),當(dāng)|AB|取得最大值時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+(y-1)2=5,直線l:mx-y+1-m=0
(1)求證:對m∈R,直線l與C總有兩個(gè)不同的交點(diǎn);
(2)設(shè)l與C交于A、B兩點(diǎn),若|AB|=
17
,求l的方程;
(3)設(shè)l與C交于A、B兩點(diǎn)且kOA+kOB=2,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案