已知?jiǎng)訄A經(jīng)過點(diǎn),且和直線相切,
(1)求動(dòng)圓圓心的軌跡C的方程;
(2)已知曲線C上一點(diǎn)M,且5,求M點(diǎn)的坐標(biāo).
(1) ;  (2)

試題分析:根據(jù)題意可知,動(dòng)圓圓心到點(diǎn)A的距離與到直線的距離相等,所以動(dòng)圓圓心的軌跡滿足拋物線的定義,其軌跡為以A為焦點(diǎn),直線為準(zhǔn)線的拋物線;由拋物線的定義和幾何性質(zhì)可知,點(diǎn)M到焦點(diǎn)的距離等于其到準(zhǔn)線的距離,即可得到點(diǎn)M的坐標(biāo).
試題解析:(1)由題意,動(dòng)圓圓心到點(diǎn)A的距離與到直線的距離相等,所以動(dòng)圓圓心的軌跡為A為焦點(diǎn),以為準(zhǔn)線的拋物線,其方程為
(2)設(shè)M的坐標(biāo)為,由題意知,所以;代入拋物線方程得,,所以
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線的焦點(diǎn)為F,過F的直線交拋物線于M、N兩點(diǎn),其準(zhǔn)線與x軸交于K點(diǎn).

(1)求證:KF平分∠MKN;
(2)O為坐標(biāo)原點(diǎn),直線MO、NO分別交準(zhǔn)線于點(diǎn)P、Q,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知橢圓經(jīng)過點(diǎn),橢圓的離心率.

(1)求橢圓的方程;
(2)過點(diǎn)作兩直線與橢圓分別交于相異兩點(diǎn)、.若的平分線與軸平行, 試探究直線的斜率是否為定值?若是, 請(qǐng)給予證明;若不是, 請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

曲線在矩陣的變換作用下得到曲線
(Ⅰ)求矩陣
(Ⅱ)求矩陣的特征值及對(duì)應(yīng)的一個(gè)特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(diǎn)為原點(diǎn),其焦點(diǎn)到直線的距離為.設(shè)為直線上的點(diǎn),過點(diǎn)作拋物線的兩條切線,其中為切點(diǎn).
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點(diǎn)為直線上的點(diǎn),求直線的方程;
(Ⅲ) 當(dāng)點(diǎn)在直線上移動(dòng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在周長(zhǎng)為定值的DDEC中,已知,動(dòng)點(diǎn)C的運(yùn)動(dòng)軌跡為曲線G,且當(dāng)動(dòng)點(diǎn)C運(yùn)動(dòng)時(shí),有最小值
(1)以DE所在直線為x軸,線段DE的中垂線為y軸建立直角坐標(biāo)系,求曲線G的方程;
(2)直線l分別切橢圓G與圓(其中)于A、B兩點(diǎn),求|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)的坐標(biāo)分別是、,直線相交于點(diǎn),且它們的斜率之積為
(1)求點(diǎn)軌跡的方程;
(2)若過點(diǎn)的直線與(1)中的軌跡交于不同的兩點(diǎn),試求面積的取值范圍(為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知?jiǎng)狱c(diǎn)到點(diǎn)的距離等于它到直線的距離,則點(diǎn)的軌跡方程是      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若實(shí)數(shù)滿足(其中是自然底數(shù)),則的最小值為_____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案