【題目】已知圓C:x2+y2﹣6x﹣8y﹣5t=0,直線l:x+3y+15=0.
(1)若直線l被圓C截得的弦長為 ,求實(shí)數(shù)t的值;
(2)當(dāng)t=1時(shí),由直線l上的動(dòng)點(diǎn)P引圓C的兩條切線,若切點(diǎn)分別為A,B,則在直線AB上是否存在一個(gè)定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】
(1)解:圓C的方程可化為(x﹣3)2+(y﹣4)2=25+5t

故圓心為C(3,4),半徑

則圓心C到直線l的距離為

又弦長為 ,則 ,解得t=15


(2)解:當(dāng)t=1時(shí),圓C的方程為x2+y2﹣6x﹣8y﹣5=0①

則圓心為C(3,4),半徑 ,圓C與直線l相離假設(shè)在直線AB上存在一個(gè)定點(diǎn)滿足條件,設(shè)動(dòng)點(diǎn)P(m,n)

由已知得PA⊥AC,PB⊥BC

則A,B在以CP為直徑的圓(x﹣3)(x﹣m)+(y﹣4)(y﹣n)=0

即x2+y2﹣(3+m)x﹣(4+n)y+3m+4n=0上②

①﹣②得,直線AB的方程為(m﹣3)x+(n﹣4)y﹣3m﹣4n﹣5=0③

又點(diǎn)P(m,n)在直線l上,則m+3n+15=0,即m=﹣3n﹣15,代入③式

得(﹣3n﹣18)x+(n﹣4)y+9n+45﹣4n﹣5=0

即直線AB的方程為18x+4y﹣40+n(3x﹣y﹣5)=0

因?yàn)樯鲜綄?duì)任意n都成立,故 ,得

故在直線AB上存在一個(gè)定點(diǎn),定點(diǎn)坐標(biāo)為(2,1)


【解析】(1)根據(jù)直線和圓相交,利用弦長公式進(jìn)行求解即可.(2)利用直線和圓相切的條件,建立方程關(guān)系進(jìn)行求解判斷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校高三學(xué)生中隨機(jī)抽取了名學(xué)生,統(tǒng)計(jì)了期末數(shù)學(xué)考試成績?nèi)缦卤恚?/span>

(1)請(qǐng)?jiān)陬l率分布表中的①、②位置上填上相應(yīng)的數(shù)據(jù),并在給定的坐標(biāo)系中作出這些數(shù)據(jù)的頻率分布直方圖,再根據(jù)頻率分布直方圖估計(jì)這名學(xué)生的平均成績;

(2)用分層抽樣的方法在分?jǐn)?shù)在內(nèi)的學(xué)生中抽取一個(gè)容量為的樣本,將該樣本看成一個(gè)總體,從中任取人,求至少有人的分?jǐn)?shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(2cos2x, ), =(1,sin2x),函數(shù)f(x)= ﹣1.
(1)當(dāng)x= 時(shí),求|a﹣b|的值;
(2)求函數(shù)f(x)的最小正周期以及單調(diào)遞增區(qū)間;
(3)求方程f(x)=k,(0<k<2),在[﹣ , ]內(nèi)的所有實(shí)數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且滿足csinA=acosC
(1)求角C的大小;
(2)求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓心為C的圓經(jīng)過點(diǎn)A(0,2)和B(1,1),且圓心C在直線l:x+y+5=0上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若P(x,y)是圓C上的動(dòng)點(diǎn),求3x﹣4y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】劉徽是我國魏晉時(shí)期著名的數(shù)學(xué)家,他編著的《海島算經(jīng)》中有一問題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高幾何?” 意思是:為了測量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線上,從前表退行123步,人恰觀測到島峰,從后表退行127步,也恰觀測到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)

A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方形的邊長為2, 的中點(diǎn),以點(diǎn)為圓心, 長為半徑作圓,點(diǎn)是該圓上的任一點(diǎn),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )
A.有兩個(gè)面平行,其余各面都是四邊形的幾何體叫棱柱.
B.有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱.
C.有一個(gè)面是多邊形,其余各面都是三角形的幾何體叫棱錐.
D.棱臺(tái)各側(cè)棱的延長線交于一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是為求S=1+ + +… 的和而設(shè)計(jì)的程序框圖,將空白處補(bǔ)上,指明它是循環(huán)結(jié)構(gòu)中的哪一種類型,并畫出它的另一種循環(huán)結(jié)構(gòu)框圖.如圖是當(dāng)型循環(huán)結(jié)構(gòu).

查看答案和解析>>

同步練習(xí)冊(cè)答案