給出以下結(jié)論:
(1)若x,y∈R,x2+y2=0,則x=0或y=0的否命題是假命題;
(2)若非零向量,兩兩成的夾角均相等,則夾角為0°或120°;
(3)實數(shù)x,y滿足4x2-5xy+4y2=5,設S=x2+y2,則+=
(4)函數(shù)f(x)=為周期函數(shù),且最小正周期T=2π.
其中正確的結(jié)論的序號是:    (寫出所有正確的結(jié)論的序號)
【答案】分析:根據(jù)(1)命題的逆命題為假命題,而逆命題與否命題同真假,得到(1)不正確.(2)空間中還可以成其它的角度.(如90),所以(2)錯誤.(3)根據(jù)函數(shù)的最值的幾何意義得到不正確,(4)根據(jù)分段函數(shù)的周期性得到正確.
解答:解:(1)命題的逆命題為:x,y∈R,若x=0或y=0,則x2+y2=0,為假命題,
而逆命題與否命題同真假,所以(1)不正確.
(2)空間中還可以成其它的角度.(如90),所以(2)錯誤.
(3)實數(shù)x,y滿足4x2-5xy+4y2=5,設S=x2+y2
4x2-5xy+4y2=5,
∴4x2+4y2=5-5xy,
∴1-(x2+y2)=xy,
∴x2+y2的最小值是
同理做出函數(shù)的最大值,結(jié)果不正確
(4)函數(shù)f(x)=分段函數(shù)中兩個函數(shù)都是周期函數(shù),
可以得到分段函數(shù)為周期函數(shù),且最小正周期T=2π.
故答案為:(1)(4)
點評:本題看出命題真假的判斷,本題解題的關鍵是利用否命題與逆命題之間的同真假的關系,考查周期函數(shù)和函數(shù)的最值,本題是一個易錯題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

14、已知函數(shù)f(x)=|2x-1|,當a<b<c時,有f(a)>f(c)>f(b).給出以下結(jié)論:
(1)a+c<0;(2)b+c<0;(3)2a+2c>2;(4)2b+2c>2.
其中正確的結(jié)論序號為
(1)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直四棱柱(側(cè)棱與底面垂直的四棱柱)ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC,給出以下結(jié)論:
(1)異面直線A1B1與CD1所成的角為45°;
(2)D1C⊥AC1;
(3)在棱DC上存在一點E,使D1E∥平面A1BD,這個點為DC的中點;
(4)在棱AA1上不存在點F,使三棱錐F-BCD的體積為直四棱柱體積的
1
5

其中正確的個數(shù)有(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下結(jié)論:(1)x,y∈R,若x2+y2=0,則x=0或y=0的否命題是假命題;
(2)若非零向量
a
,
b
c
兩兩成的夾角均相等,則夾角為0°或120°
(3)若(1+x)10=a0+a1x+a2x2+…+a10x10,則a0+a1+2a2+3a3+…10a10=10×29
(4)實數(shù)x,y滿足4x2-5xy+4y2=5,設S=x2+y2,則
1
Smax
+
1
Smin
=
7
5

(5)函數(shù)f(x)=
sinx,(sinx≤cosx)
cosx,(sinx>cosx)
為周期函數(shù),且最小正周期T=2π
其中正確的結(jié)論的序號是:
(1)(5)
(1)(5)
(寫出所有正確的結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下結(jié)論:
(1)若x,y∈R,x2+y2=0,則x=0或y=0的否命題是假命題;
(2)若非零向量
a
,
b
c
兩兩成的夾角均相等,則夾角為0°或120°;
(3)實數(shù)x,y滿足4x2-5xy+4y2=5,設S=x2+y2,則
1
smax
+
1
smin
=
7
5

(4)函數(shù)f(x)=
sinx,(sinx≤cosx)
cosx,(sinx>cosx)
為周期函數(shù),且最小正周期T=2π.
其中正確的結(jié)論的序號是:
(1)(4)
(1)(4)
(寫出所有正確的結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011年吉林省長春市高一上學期期末數(shù)學理卷 題型:填空題

定義在上的函數(shù),給出以下結(jié)論:

(1)是周期函數(shù);(2)的最小值是;(3)當且僅當時,有最大值;(4)的圖象上相鄰的最低點的距離是.

其中正確命題的序號是                      .

 

查看答案和解析>>

同步練習冊答案