已知向量
a
,
b
為單位向量,其夾角為120°,若實數(shù)x、y滿足|x
a
+y
b
|=
3
,則x2+y2的最小值是(  )
分析:利用向量的模長公式,化簡|x
a
+y
b
|=
3
,可得x2+y2-xy=3,再利用基本不等式,即可求出x2+y2的最小值.
解答:解:∵向量
a
,
b
為單位向量,其夾角為120°,實數(shù)x、y滿足|x
a
+y
b
|=
3

∴x2+y2-xy=3,
∴x2+y2-3=xy,
∴-
x2+y2
2
x2+y2-3≤
x2+y2
2
,
∴2≤x2+y2≤6,
∴x2+y2的最小值是2.
故選D.
點評:本題考查向量的模長公式的運用,考查基本不等式,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•資陽一模)已知向量
a
b
為單位向量,且它們的夾角為60°,則|
a
-3
b
|
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•邯鄲二模)已知向量
a
b
為單位向量,且
a
b
=-
1
2
,向量
c
a
+
b
共線,則|
a
+
c
|的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:資陽一模 題型:單選題

已知向量
a
b
為單位向量,且它們的夾角為60°,則|
a
-3
b
|
=( 。
A.
7
B.
10
C.
13
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:邯鄲二模 題型:單選題

已知向量
a
,
b
為單位向量,且
a
b
=-
1
2
,向量
c
a
+
b
共線,則|
a
+
c
|的最小值為(  )
A.1B.
1
2
C.
3
4
D.
3
2

查看答案和解析>>

同步練習(xí)冊答案