如圖,已知棱柱的底面是菱形,且,,,為棱的中點(diǎn),為線段的中點(diǎn),

(Ⅰ)求證: ;
(Ⅱ)判斷直線與平面的位置關(guān)系,并證明你的結(jié)論;
(Ⅲ)求三棱錐的體積.

(Ⅰ)證明:連結(jié)、交于點(diǎn),再連結(jié),
可得,四邊形是平行四邊形,由平面.
(Ⅱ)平面 
(Ⅲ).

解析試題分析:(Ⅰ)證明:連結(jié)、交于點(diǎn),再連結(jié),
 
,且, 又,故,
 四邊形是平行四邊形,故,平面         4分
(Ⅱ)平面,下面加以證明:
在底面菱形,
平面,
,平面,
,平面         8分
(Ⅲ)過點(diǎn),垂足,平面,平面
,平面,
中,,,故,
         12分
考點(diǎn):本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系,體積計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問題的一個(gè)基本思路。注意運(yùn)用轉(zhuǎn)化與化歸思想,將空間問題轉(zhuǎn)化成平面問題。本題含“探究性問題”,這一借助于幾何體中的垂直關(guān)系。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,,,分別為的中點(diǎn).

(Ⅰ)求證:;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四棱錐P-ABCD的三視圖如下圖所示,E是側(cè)棱PC上的動(dòng)點(diǎn).


(1)求四棱錐P-ABCD的體積;
(2)是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論;
(3)若點(diǎn)E為PC的中點(diǎn),求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐中,,是正三角形,的交點(diǎn)恰好是中點(diǎn),又,點(diǎn)在線段上,且

(1)求證:;
(2)求證:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在底面是直角梯形的四棱錐S-ABCD中,


(1)求四棱錐S-ABCD的體積;
(2)求證:
(3)求SC與底面ABCD所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,平面ABCD⊥平面ADEF,其中ABCD為矩形,ADEF為梯形, AF∥DE,AF⊥FE,AF=AD=2 DE=2.

(Ⅰ) 求異面直線EF與BC所成角的大;
(Ⅱ) 若二面角A-BF-D的平面角的余弦值為,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知空間四邊形中,,的中點(diǎn).

(Ⅰ)求證:平面CDE;
(Ⅱ)若G為的重心,試在線段AE上確定一點(diǎn)F,使得GF//平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P-ABCD的底面為正方形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD,

(I) 求證:平面PAD⊥平面PCD
(II)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的幾何體中,四邊形為矩形,為直角梯形,且 = = 90°,平面平面,,

(1)若的中點(diǎn),求證:平面;
(2)求平面與平面所成銳二面角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案