如圖所示,在三棱錐PABC中,已知PC⊥平面ABC,點(diǎn)C在平面PBA內(nèi)的射影D在直線PB上.
(1)求證:AB⊥平面PBC;
(2)設(shè)AB=BC,直線PA與平面ABC所成的角為45°,求異面直線AP與BC所成的角;
(3)在(2)的條件下,求二面角C-PA-B的余弦值.
(1)由PC⊥平面ABC,得AB⊥PC.由點(diǎn)C在平面PBA內(nèi)的射影D在直線PB上,
得到CD⊥平面PAB.進(jìn)一步推出AB⊥平面PBC.
(2)異面直線AP與BC所成的角為60°.
(3)所求二面角的余弦值為.
解析試題分析:(1)∵PC⊥平面ABC,AB?平面ABC,
∴AB⊥PC.∵點(diǎn)C在平面PBA內(nèi)的射影D在直線PB上,
∴CD⊥平面PAB.
又∵AB?平面PBA,∴AB⊥CD.
又∵CD∩PC=C,∴AB⊥平面PBC.
(2)∵PC⊥平面ABC,
∴∠PAC為直線PA與平面ABC所成的角.
于是∠PAC=45°,設(shè)AB=BC=1,則PC=AC=,以B為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則B(0,0,0),A(0,1,0),C(1,0,0),P(1,0,),
=(1,-1,),=(1,0,0),
∵cos〈,〉==,∴異面直線AP與BC所成的角為60°.
(3)取AC的中點(diǎn)E,連接BE,則=(,,0),
∵AB=BC,∴BE⊥AC.又∵平面PCA⊥平面ABC,
∴BE⊥平面PAC.∴是平面PAC的法向量.設(shè)平面PAB的法向量為n=(x,y,z),則由得取z=1,得
∴n=(-,0,1).
于是cos〈n,〉===-.
又∵二面角C-PA-B為銳角,∴所求二面角的余弦值為.
考點(diǎn):本題主要考查立體幾何中的垂直關(guān)系、角的計(jì)算。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用空間向量,省去繁瑣的證明,也是解決立體幾何問(wèn)題的一個(gè)基本思路。注意運(yùn)用轉(zhuǎn)化與化歸思想,將空間問(wèn)題轉(zhuǎn)化成平面問(wèn)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在長(zhǎng)方體,中,,點(diǎn)在棱AB上移動(dòng).
(1 )證明:;
(2)當(dāng)為的中點(diǎn)時(shí),求點(diǎn)到面的距離;
(3)等于何值時(shí),二面角的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在正方體ABCD—A1B1C1D1中,E、F分別為棱BB1和DD1的中點(diǎn).
(1)求證:平面B1FC//平面ADE;
(2)試在棱DC上取一點(diǎn)M,使平面ADE;
(3)設(shè)正方體的棱長(zhǎng)為1,求四面體A1—FEA的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,矩形中,,,為上的點(diǎn),且,AC、BD交于點(diǎn)G.
(1)求證:;
(2)求證;;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在多面體中,四邊形是邊長(zhǎng)為2的正方形,平面平面,平面都與平面垂直,且、、都是正三角形。
(1)求證:;
(2)求多面體的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面ABCD是正方形,底面,且PA=AB.
(1)求證:BD平面PAC;
(2)求異面直線BC與PD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在斜三棱柱ABC—A1B1C1中,AB⊥側(cè)面BB1C1C,BC=2,BB1=4,AB=,∠BCC1=60°.
(Ⅰ)求證:C1B⊥平面A1B1C1;
(Ⅱ)求A1B與平面ABC所成角的正切值;
(Ⅲ)若E為CC1中點(diǎn),求二面角A—EB1—A1的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱ABC—中,底面為正三角形,平面ABC,=2AB,N是的中點(diǎn),M是線段上的動(dòng)點(diǎn)。
(1)當(dāng)M在什么位置時(shí),,請(qǐng)給出證明;
(2)若直線MN與平面ABN所成角的大小為,求的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等邊三角形,已知AD=4, BD=,AB=2CD=8.
(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD;
(2)求四棱錐P-ABCD的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com