已知向量m=(2cosx,2sinx),n=(cosx,
3
cosx),設(shè)f(x)=m•n-1.
(I)求f(
π
6
)
的值;
(Ⅱ)求函數(shù)f(x)的最小正周期單調(diào)遞增區(qū)間.
分析:(I)利用平面向量的數(shù)量積運(yùn)算法則化簡f(x)解析式,再利用兩角和與差的正弦函數(shù)公式化為一個叫角的正弦函數(shù),將x=
π
6
代入即可求出f(
π
6
)的值;
(Ⅱ)找出ω的值,代入周期公式即可求出f(x)的最小正周期;根據(jù)正弦函數(shù)的遞增區(qū)間求出x的范圍,即為函數(shù)f(x)的遞增區(qū)間.
解答:解:(I)f(x)=2cos2x+2
3
sinxcosx-1=cos2x+
3
sin2x=2sin(2x+
π
6
),
∴f(
π
6
)=2sin(2×
π
6
+
π
6
)=2sin
π
2
=2;
(Ⅱ)∵ω=2,∴T=
2
=π,
∵2kπ-
π
2
≤2x+
π
6
≤2kπ+
π
2
,k∈Z,
∴kπ-
π
3
≤x≤kπ+
π
6
,k∈Z,
則函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-
π
3
,kπ+
π
6
],k∈Z.
點評:此題考查了兩角和與差的正弦函數(shù)公式,平面向量的數(shù)量積運(yùn)算,二倍角的余弦函數(shù)公式,正弦函數(shù)的單調(diào)性,以及三角函數(shù)的周期性及其求法,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2cosx,2sinx),
n
=(cosx,
3
cosx),設(shè)f(x)=
m
n
-1.
(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,角A,B,C所對的邊分別為a,b,c,若f(
C
2
)=2
,且acosB=bcosA,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(2cosx,1),
n
=(cosx,
3
sin2x),f(x)=
m
n

(1)求f(x)的最小正周期和最大值;
(2)在△ABC中,a,b,c分別是角A、B、C的對邊,且f(A)=2,a=
3
,b=1,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知向量m=(2cosx,2sinx),n=(cosx,cosx),設(shè)f(x)=m•n-1.
(I)求的值;
(Ⅱ)求函數(shù)f(x)的最小正周期單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知向量
m
=(2cosx,1),
n
=(cosx,
3
sin2x),f(x)=
m
n

(1)求f(x)的最小正周期和最大值;
(2)在△ABC中,a,b,c分別是角A、B、C的對邊,且f(A)=2,a=
3
,b=1,求角C.

查看答案和解析>>

同步練習(xí)冊答案