(本小題滿分12分)在平面直角坐標系xOy中,已知雙曲線C1:2x2-y2=1.
(1)過C1的左頂點引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;
(2)設斜率為1的直線l交C1于P、Q兩點.若l與圓x2+y2=1相切,求證:OP⊥OQ;
(1) S=|OA||y|=.(2)見解析。
【解析】(1)先把雙曲線的方程化成標準方程可求出a值,從而得到左頂點A,漸近線方程:y=±x,然后可設出過點A與漸近線y=x平行的直線方程為y=,即y=x+1.它再與另一條漸近線方程聯立解方程組可求出交點坐標,從而得到所求三角形的高,度顯然等于|OA|,面積得解.
(2) 設直線PQ的方程是y=x+b,因直線PQ與已知圓相切,
故=1,即b2=2.
由得x2-2bx-b2-1=0(*)
設P(x1,y1)、Q(x2,y2),然后證·=x1x2+y1y2=x1x2+(x1+b)(x2+b)=2x1x2+b(x1+x2)+b2,借助(*)式方程中的韋達定理代入此式證明·=0即可.
(1)雙曲線C1:-y2=1,左頂點A,漸近線方程:y=±x.
過點A與漸近線y=x平行的直線方程為y=,即y=x+1.
解方程組得
所以所求三角形的面積為S=|OA||y|=.
(2)設直線PQ的方程是y=x+b,因直線PQ與已知圓相切,
故=1,即b2=2.
由得x2-2bx-b2-1=0.
設P(x1,y1)、Q(x2,y2),則
又y1y2=(x1+b)(x2+b),所以
·=x1x2+y1y2=2x1x2+b(x1+x2)+b2
=2(-1-b2)+2b2+b2=b2-2=0.
故OP⊥OQ.
科目:高中數學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數分別占總數的、、.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com