【題目】2019新型冠狀病毒(2019nCoV)于2020112日被世界衛(wèi)生組織命名.冠狀病毒是一個(gè)大型病毒家族,可引起感冒以及中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重疾病.某醫(yī)院對(duì)病患及家屬是否帶口罩進(jìn)行了調(diào)查,統(tǒng)計(jì)人數(shù)得到如下列聯(lián)表:

戴口罩

未戴口罩

總計(jì)

未感染

30

10

40

感染

4

6

10

總計(jì)

34

16

50

1)根據(jù)上表,判斷是否有95%的把握認(rèn)為未感染與戴口罩有關(guān);

2)從上述感染者中隨機(jī)抽取3人,記未戴口罩的人數(shù)為,求的分布列和數(shù)學(xué)期望.

參考公式:,其中.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)有把握;(2)分布列見(jiàn)解析,.

【解析】

1)由表求出,即可判斷;

2)由題意知的取值可能為0,12,3,求出每種情況的概率,從而可得分布列,進(jìn)而可求數(shù)學(xué)期望.

解:(1)由列聯(lián)表可知,.

所以有95%的把握認(rèn)為未感染與戴口罩有關(guān).

2)由題知,感染者中有4人戴口罩,6人未戴口罩,則的取值可能為0,1,2,3.

;;;

,則的分布列為

X

0

1

2

3

P

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線的參數(shù)方程為,(為參數(shù)).直線與曲線交于兩點(diǎn).

1)寫出曲線的直角坐標(biāo)方程和直線的普通方程.

2)設(shè),若成等比數(shù)列,求和的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體中,面,面,,,,.

1)求的大小;

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,,平面平面,且

1)求證:平面;

2)求二面角的正弦值;

3)已知點(diǎn)在棱上,且異面直線所成角的余弦值為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新型冠狀病毒肺炎COVID-19疫情發(fā)生以來(lái),在世界各地逐漸蔓延.在全國(guó)人民的共同努力和各級(jí)部門的嚴(yán)格管控下,我國(guó)的疫情已經(jīng)得到了很好的控制.然而,小王同學(xué)發(fā)現(xiàn),每個(gè)國(guó)家在疫情發(fā)生的初期,由于認(rèn)識(shí)不足和措施不到位,感染人數(shù)都會(huì)出現(xiàn)快速的增長(zhǎng).下表是小王同學(xué)記錄的某國(guó)連續(xù)8天每日新型冠狀病毒感染確診的累計(jì)人數(shù).

日期代碼x

1

2

3

4

5

6

7

8

累計(jì)確診人數(shù)y

4

8

16

31

51

71

97

122

為了分析該國(guó)累計(jì)感染人數(shù)的變化趨勢(shì),小王同學(xué)打算從①,②中選擇一種模型對(duì)變量xy的關(guān)系進(jìn)行擬合,得到相應(yīng)的回歸方程,經(jīng)過(guò)計(jì)算得,,,其中,

1)請(qǐng)根據(jù)散點(diǎn)圖,比較模型①,②的擬合效果,小王應(yīng)該選擇哪個(gè)模型?

2)根據(jù)(1)問(wèn)選定的模型求出相應(yīng)的回歸方程(系數(shù)均保留一位小數(shù));

3)由于時(shí)差,該國(guó)截止第9天新型冠狀病毒感染確診的累計(jì)人數(shù)尚未公布.小王同學(xué)認(rèn)為,如果防疫形勢(shì)沒(méi)有得到明顯改善,在數(shù)據(jù)公布之前可以根據(jù)他在(2)問(wèn)求出的回歸方程來(lái)對(duì)感染人數(shù)作出預(yù)測(cè),那么估計(jì)該地區(qū)第9天新型冠狀病毒感染確診的累計(jì)人數(shù)是多少.

附:回歸直線的最小二乘估計(jì)參考公式為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),是橢圓的左,右焦點(diǎn),橢圓上一點(diǎn)滿足軸,,.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)的直線交橢圓兩點(diǎn),當(dāng)的內(nèi)切圓面積最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫算,是一種格子乘法,也是筆算乘法的一種,用以區(qū)別籌算與珠算,它由明代數(shù)學(xué)家吳敬在其撰寫的《九章算法比類大全》一書中提出,是從天元式的乘法演變而來(lái).例如計(jì)算,將被乘數(shù)89計(jì)入上行,乘數(shù)65計(jì)入右行.然后以乘數(shù)65的每位數(shù)字乘被乘數(shù)89的每位數(shù)字,將結(jié)果計(jì)入相應(yīng)的格子中,最后從右下方開始按斜行加起來(lái),滿十向上斜行進(jìn)一,如圖,即得5785.類比此法畫出的表格,若從表內(nèi)(表周邊數(shù)據(jù)不算在內(nèi))任取一數(shù),則恰取到奇數(shù)的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2013年華人數(shù)學(xué)家張益唐證明了孿生素?cái)?shù)猜想的一個(gè)弱化形式,此事引起了國(guó)際數(shù)學(xué)界的轟動(dòng)許多專家認(rèn)為這是數(shù)論研究中的一項(xiàng)重大突破世界主流媒體都對(duì)這項(xiàng)重要成果作了報(bào)道并給予了高度評(píng)價(jià),印度媒體甚至稱贊張益唐為中國(guó)的拉馬努金”.孿生素?cái)?shù)猜想是希爾伯特在1900年提出的23個(gè)問(wèn)題之一,可以這樣描述:存在無(wú)窮多個(gè)素?cái)?shù),使得是素?cái)?shù),素?cái)?shù)對(duì)稱為孿生素?cái)?shù).在不超過(guò)20的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其中能夠組成孿生素?cái)?shù)的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為

1)若直線與曲線至多只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍;

2)若直線與曲線相交于,兩點(diǎn),且的中點(diǎn)為,求點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案