【題目】設P為雙曲線 =1右支上的任意一點,O為坐標原點,過點P作雙曲線兩漸近線的平行線,分別與兩漸近線交于A,B兩點,則平行四邊形PAOB的面積為 .
【答案】15
【解析】解:方法一:雙曲線 =1的漸近線方程為y=± x, 不妨設P為雙曲線右支上一點,其坐標為P(6secφ,5tanφ),
則直線PA的方程為y﹣5tanφ=﹣ (x﹣6secφ),
將y= x代入,解得點A的橫坐標為xA=3(secφ+tanφ).
同理可得,點B的橫坐標為xB=3(secφ﹣tanφ).
設∠AOF=α,則tanα= .
∴平行四邊形PAOB的面積為S□PAOB=|OA||OB|sin2α= sin2α= sin2α= tanα=18× =15,
平行四邊形PAOB的面積15,
方法二:雙曲線 =1的漸近線方程為y=± x,P(x0 , y0)直線PA的方程為y﹣y0=﹣ (x﹣x0),
直線OB的方程為y= x,
,解得xA= (6y0+5x0).又P到漸近線OA的距離d= = ,又tan∠xOA= ∴cos∠xOA= ,
∴平行四邊形OQPR的面積S=2S△OPA=|OA|d= = × 丨6y0+5x0丨× = × 900=15,
所以答案是:15.
科目:高中數學 來源: 題型:
【題目】袋中裝有大小相同的四個球,四個球上分別標有數字“2”,“3”,“4”,“6”,現(xiàn)從中隨機選取三個球,則所選的三個球上的數字能構成等差數列的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓M:x2+y2+2y﹣7=0和點N(0,1),動圓P經過點N且與圓M相切,圓心P的軌跡為曲線E.
(1)求曲線E的方程;
(2)點A是曲線E與x軸正半軸的交點,點B、C在曲線E上,若直線AB、AC的斜率k1 , k2 , 滿足k1k2=4,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知點P(2,0),且正方形ABCD內接于⊙O:x2+y2=1,M、N分別為邊AB、BC的中點.當正方形ABCD繞圓心O旋轉時, 的取值范圍為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法正確的是( )
A.若命題p:?x0∈R,x02﹣x0+1<0,則¬p:?x?R,x2﹣x+1≥0
B.已知相關變量(x,y)滿足回歸方程 =2﹣4x,若變量x增加一個單位,則y平均增加4個單位
C.命題“若圓C:(x﹣m+1)2+(y﹣m)2=1與兩坐標軸都有公共點,則實數m∈[0,1]為真命題
D.已知隨機變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4﹣a)=0.68
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=alnx﹣ax﹣3(a∈R).
(Ⅰ)求函數f(x)的單調區(qū)間;
(Ⅱ)若函數y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數g(x)=x3+x2(f'(x)+ )在區(qū)間(t,3)上總不是單調函數,求m的取值范圍;
(Ⅲ)求證: × × ×…× < (n≥2,n∈N*).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學著作《九章算術》有如下問題:“今有人持金出五關,前關二而稅一,次關三而稅一,次關四而稅一,次關五而稅一,次關六而稅一,并五關所稅,適重一斤,問本持金幾何”其意思為“今有人持金出五關,第1關收稅金 ,第2關收稅金為剩余金的 ,第3關收稅金為剩余金的 ,第4關收稅金為剩余金的 ,第5關收稅金為剩余金的 ,5關所收稅金之和,恰好重1斤,問原來持金多少?”若將題中“5關所收稅金之和,恰好重1斤,問原來持金多少?”改成假設這個原來持金為x,按此規(guī)律通過第8關,則第8關需收稅金為x.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[不等式選講]
設函數f(x)=a(x﹣1).
(Ⅰ)當a=1時,解不等式|f(x)|+|f(﹣x)|≥3x;
(Ⅱ)設|a|≤1,當|x|≤1時,求證: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2016年下半年,錦陽市教體局舉行了市教育系統(tǒng)直屬單位職工籃球比賽,以增強直屬單位間的交流與合作,組織方統(tǒng)計了來自A1 , A2 , A3 , A4 , A5等5個直屬單位的男子籃球隊的平均身高與本次比賽的平均得分,如表所示:
單位 | A1 | A2 | A3 | A4 | A5 |
平均身高x(單位:cm) | 170 | 174 | 176 | 181 | 179 |
平均得分y | 62 | 64 | 66 | 70 | 68 |
注:回歸當初 中斜率和截距最小二乘估計公式分別為 , .
(1)根據表中數據,求y關于x的線性回歸方程;(系數精確到0.01)
(2)若M隊平均身高為185cm,根據(I)中所求得的回歸方程,預測M隊的平均得分(精確到0.01)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com