曲線y=ex在點(2,e2)處的切線斜率為( 。
分析:求導數(shù),令x=2求出導數(shù)的值,即可得到結(jié)論.
解答:解:求導數(shù)可得y′=ex,當x=2時,y′=e2
∴曲線y=ex在點(2,e2)處的切線斜率為e2,
故選C.
點評:本題考查導數(shù)的幾何意義,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

曲線y=ex在點(2,e2)處的切線與坐標軸所圍三角形的面積為( 。
A、
9
4
e2
B、2e2
C、e2
D、
e2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=ex在點(2,e2)處的切線與坐標軸所圍三角形的面積為( 。
A、
3
2
e2
B、2e2
C、e2
D、
1
2
e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

3、曲線y=ex在點(2,e2)處的切線的橫截距為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=ex在點(2,e2)處的切線方程為
y=e2x-2e2
y=e2x-2e2

查看答案和解析>>

同步練習冊答案