【題目】已知O為原點(diǎn),A,B,C為平面內(nèi)的三點(diǎn).求證:

(1) 若A,B,C三點(diǎn)共線,則存在實(shí)數(shù)α,β,且α+β=1,

(2) 若存在實(shí)數(shù)α,β,且α+β=1,使得,則A,B,C三點(diǎn)共線.

【答案】(1)見(jiàn)解析(2)見(jiàn)解析

【解析】試題分析:(1)由三點(diǎn)共線可得向量共線:,再轉(zhuǎn)化為向量,整理可得關(guān)于,根據(jù)分解定理可得 ,即證得α+β=1(2)逆推(1),將條件,轉(zhuǎn)化為向量關(guān)系,根據(jù)向量共線得三點(diǎn)共線

試題解析:證明:(1) 由A,B,C三點(diǎn)共線,知共線,所以存在λ∈R,使=λ,即=λ(),得=λ+(1-λ),令λ=β,1-λ=α,則α+β=1,=α+β.

(2) 由=α+β=(1-β)+β,得=β(),即=β,β∈R,

共線.

又有公共點(diǎn)A,故A,B,C三點(diǎn)共線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿足.

(1)求證:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;

(2)記數(shù)列的前項(xiàng)和,求使得成立的最小整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,已知,點(diǎn)在底面的投影是線段的中點(diǎn)

(1)證明:在側(cè)棱上存在一點(diǎn),使得平面,并求出的長(zhǎng);

(2)求:平面與平面夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,平面,,且為等邊三角形,,與平面所成角的正弦值為

1)若是線段的中點(diǎn),證明:平面;

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于空間直角坐標(biāo)系中的一點(diǎn),有下列說(shuō)法:

①點(diǎn)到坐標(biāo)原點(diǎn)的距離為;

的中點(diǎn)坐標(biāo)為

③點(diǎn)關(guān)于軸對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為;

④點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為;

⑤點(diǎn)關(guān)于坐標(biāo)平面對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為.

其中正確的個(gè)數(shù)是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;

(2)當(dāng)時(shí),設(shè)函數(shù).若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在三棱錐A-BOC中,OA底面BOC,OAB=OAC=30°,AB=AC=4,BC=,動(dòng)點(diǎn)D在線段AB上.

(1)求證:平面COD平面AOB;

(2)當(dāng)ODAB時(shí),求三棱錐C-OBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以邊長(zhǎng)為4的等比三角形的頂點(diǎn)以及邊的中點(diǎn)為左、右焦點(diǎn)的橢圓過(guò)兩點(diǎn).

1)求該橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)軸不垂直的直線交橢圓于兩點(diǎn),求證直線的交點(diǎn)在一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形中,,沿將梯形折起,使得平面⊥平面.

(1)證明:

(2)求三棱錐的體積;

(3)求直線

查看答案和解析>>

同步練習(xí)冊(cè)答案