(13分)已知,A是拋物線y2=2x上的一動點,過A作圓(x-1)2+y2=1的兩條切線分別切圓于EF兩點,交拋物線于M.N兩點,交y軸于B.C兩點
(1)當(dāng)A點坐標(biāo)為(8,4)時,求直線EF的方程;
(2)當(dāng)A點坐標(biāo)為(2,2)時,求直線MN的方程;
(3)當(dāng)A點的橫坐標(biāo)大于2時,求△ABC面積的最小值。
(1)7x+4y-8=0
(2)3x+2y-2=0
(3)8
【解析】
(1)∵DEFA四點共圓
EF是圓(x-1)2+y2=1及(x-1)(x-8)+y(y-4)=0的公共弦
∴EF的方程為7x+4y-8=0………………………………………………4分
(2)設(shè)AM的方程為y-2=k(x-2)
即kx-y+2-2k=0與圓(x-1)2+y2=1相切得
=1
∴k=
把y-2=(x-2)代入y2=2x得M(,),而N(2,-2)
∴MN的方程為3x+2y-2=0………………………………………………8分
(3)設(shè)P(x0,y0),B(0,b),C(0,c),不妨設(shè)b>c,
直線PB的方程為y-b=,
即(y0-b)x-x0y+x0b=0
又圓心(1,0)到PB的距離為1,所以=1,故
(y0-b)2+x=(y0-b)2+2x0b(y0-b)+ xb2
又x0>2,上式化簡得(x0-2)b2+2y0b-x0=0
同理有(x0-2)c2+2y0c-x0=0
故b,c是方程(x0-2)t2+2y0t-x0=0的兩個實數(shù)根
所以b+c=,bc=,則(b-c)2=
因為P(x0,y0)是拋物線上的點,所以有y=2x0,則
(b-c)2=,b-c=,
∴S△PBC=(b-c)x0==x0-2++4≥2+4=8
當(dāng)(x0-2)2=4時,上式取等號,此時x0=4,y=±2
因此S△PBC的最小值為8…………………………………………………………13分
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
|
(1)求p的值;
(2)過該拋物線的焦點作兩條互相垂直的直線l1,l2,與拋物線相交得兩條弦,兩條弦
的中點分別為G,H.求|GH|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分13分) 已知點A是拋物線y2=2px(p>0)上一點,F(xiàn)為拋物線的焦點,準(zhǔn)線l與x軸交于點K, 已知|AK|=|AF|,三角形AFK的面積等于8. (Ⅰ)求p的值;(Ⅱ)過該拋物線的焦點作兩條互相垂直的直線l1,l2,與拋物線相交得兩條弦,兩條弦的中點分別為G,H.求|GH|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省、鐘祥一中高三第二次聯(lián)考數(shù)學(xué)理卷 題型:解答題
(13分)已知,A是拋物線y2=2x上的一動點,過A作圓(x-1)2+y2=1的兩條切線分別切圓于EF兩點,交拋物線于M.N兩點,交y軸于B.C兩點
(1)當(dāng)A點坐標(biāo)為(8,4)時,求直線EF的方程;
(2)當(dāng)A點坐標(biāo)為(2,2)時,求直線MN的方程;
(3)當(dāng)A點的橫坐標(biāo)大于2時,求△ABC面積的最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com