已知點F1、F2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,過F1且垂直于軸的直線與橢圓交于A、B兩點,若△ABF2為正三角形,則橢圓的離心率是
3
3
3
3
分析:先求出 AF1 的長,直角三角形AF1F2 中,由邊角關系得 tan60°=
AF1
F1F2
=
b2
a
2c
建立關于離心率的方程,解方程求出離心率的值
解答:解:由已知可得,AF1=
b2
a

∵tan60°=
AF1
F1F2
=
b2
a
2c
=
a2-c2
2ac
=
1-e2
2e
=
3

3
e2+2e-
3
=0

∵0<e<1
∴e=
3
3

故答案為:
3
3
點評:本題考查橢圓的簡單性質(zhì),直角三角形中的邊角關系,解方程求離心率的大。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•聊城一模)已知點F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點,P是橢圓C上的一點,且|F1F2|=2,∠F1PF2=
π
3
,△F1PF2
的面積為
3
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)點M的坐標為(
5
4
,0)
,過點F2且斜率為k的直線l與橢圓C相交于A,B兩點,對于任意的k∈R,
MA
MB
是否為定值?若是求出這個定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•青州市模擬)已知點F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,點P為橢圓上任意一點,P到焦點F2的距離的最大值為
2
+1
,且△PF1F2的最大面積為1.
( I)求橢圓C的方程.
( II)點M的坐標為(
5
4
,0)
,過點F2且斜率為k的直線L與橢圓C相交于A,B兩點.對于任意的k∈R,
MA
MB
是否為定值?若是求出這個定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點,點P為橢圓上任意一點,P到焦點F2(1,0)的距離的最大值為
2
+1.
(1)求橢圓C的方程.
(2)點M的坐標為(
5
4
,0),過點F2且斜率為k的直線l與橢圓C相交于A,B兩點.對于任意的k∈R,
MA
MB
是否為定值?若是求出這個定值;若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省期中題 題型:解答題

已知點F1,F(xiàn)2分別為橢圓C:(a>b>0)的左、右焦點,點P為橢圓上任意一點,P到焦點F2的距離的最大值為+1,且△PF1F2的最大面積為1。
(1)求橢圓C的方程。
(2)點M的坐標為,過點F2且斜率為k的直線L與橢圓C相交于A,B兩點。對于任意的k∈R,是否為定值?若是求出這個定值;若不是說明理由。 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省青島十九中高三(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知點F1,F(xiàn)2分別為橢圓C:的左右焦點,P是橢圓C上的一點,且的面積為
(Ⅰ)求橢圓C的方程;
(Ⅱ)點M的坐標為,過點F2且斜率為k的直線l與橢圓C相交于A,B兩點,對于任意的是否為定值?若是求出這個定值;若不是說明理由.

查看答案和解析>>

同步練習冊答案