(本小題滿(mǎn)分14分)

      

若一個(gè)數(shù)列各項(xiàng)取倒數(shù)后按原來(lái)的順序構(gòu)成等差數(shù)列,則稱(chēng)這個(gè)數(shù)列為調(diào)和數(shù)列.已知數(shù)列是調(diào)和數(shù)列,對(duì)于各項(xiàng)都是正數(shù)的數(shù)列,滿(mǎn)足

(Ⅰ)求證:數(shù)列是等比數(shù)列;

(Ⅱ)把數(shù)列中所有項(xiàng)按如圖所示的規(guī)律排成一個(gè)三角形數(shù)表,

當(dāng)時(shí),求第行各數(shù)的和;

(Ⅲ)對(duì)于(Ⅱ)中的數(shù)列,若數(shù)列滿(mǎn)足

,求證:數(shù)列為等差數(shù)列.

(本小題滿(mǎn)分14分)

解:(Ⅰ)證明:因?yàn)?sub>,且數(shù)列中各項(xiàng)都是正數(shù),

所以

設(shè),                ①

因?yàn)閿?shù)列是調(diào)和數(shù)列,故

所以.                                  ②

由①得,

代入②式得,即.

. 所以數(shù)列是等比數(shù)列.    ………………………………5分

(Ⅱ)設(shè)的公比為,則,即.由于,故

于是

注意到第行共有個(gè)數(shù),

所以三角形數(shù)表中第1行至第行共含有個(gè)數(shù).

因此第行第1個(gè)數(shù)是數(shù)列中的第項(xiàng).

故第行第1個(gè)數(shù)是

所以第行各數(shù)的和為.  …………10分

(Ⅲ)由 ,得

,所以,         ①

                         ②

②—① 得 ,

,   ③

,   ④

④-③ 得 ,即.

所以為等差數(shù)列.           ………………………………………………14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•廣東模擬)(本小題滿(mǎn)分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分14分)設(shè)橢圓C1的方程為(ab>0),曲線(xiàn)C2的方程為y=,且曲線(xiàn)C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿(mǎn)分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿(mǎn)分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷(xiāo)售價(jià)格及銷(xiāo)售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷(xiāo)售價(jià)格(單位:元)為,第天的銷(xiāo)售量為,已知該商品成本為每件25元.

(Ⅰ)寫(xiě)出銷(xiāo)售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤(rùn);

(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分14分)已知的圖像在點(diǎn)處的切線(xiàn)與直線(xiàn)平行.

⑴ 求,滿(mǎn)足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案