(本小題滿分12分)
已知點(diǎn)是區(qū)域,()內(nèi)的點(diǎn),目標(biāo)函數(shù),的最大值記作.若數(shù)列的前項(xiàng)和為,,且點(diǎn)()在直線上.
(Ⅰ)證明:數(shù)列為等比數(shù)列;
(Ⅱ)求數(shù)列的前項(xiàng)和.
解:(Ⅰ)見解析;
(Ⅱ)∴

試題分析:(1)根據(jù)當(dāng)直線過點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值,故
進(jìn)而得到的關(guān)系式,然后利用通項(xiàng)公式與前n項(xiàng)和的關(guān)系得到證明。
(2)由(Ⅰ)得,∴,根據(jù)通項(xiàng)公式的特點(diǎn),分組求和得到結(jié)論。
解:(Ⅰ)由已知當(dāng)直線過點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值,故
∴方程為
∵()在直線上, 
 ①
 ②
由①-②得,      ∴,

,    ∴數(shù)列為首項(xiàng),為公比的等比數(shù)列
(Ⅱ)由(Ⅰ)得,∴
,  ∴


點(diǎn)評(píng):解決該試題的關(guān)鍵是分析出線性目標(biāo)函數(shù)的最優(yōu)解,然后得到,然后得到
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列滿足,若,則(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列{an}、{bn}分別是首項(xiàng)均為2的各項(xiàng)均為正數(shù)的等比數(shù)列和等差數(shù)列,且

(I)   求數(shù)列{an}、{bn}的通項(xiàng)公式;
(II )求使<0.001成立的最小的n值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知數(shù)列﹛﹜滿足:.(Ⅰ)求數(shù)列﹛﹜的通項(xiàng)公式;(Ⅱ)設(shè),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)已知數(shù)列中,.
⑴ 求出數(shù)列的通項(xiàng)公式;
⑵ 設(shè),求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=xm+ax的導(dǎo)數(shù)f′(x)=2x+1,則數(shù)列 n∈(N*)的前n項(xiàng)和(  )
A.B. C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列滿足,則=      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列的前項(xiàng)和,那么它的通項(xiàng)公式     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),an,Sn,Sn成等比數(shù)列.
(1)求a2,a3,a4,并推出an的表達(dá)式;(2)用數(shù)學(xué)歸納法證明所得的結(jié)論;
(3)求數(shù)列{an}前n項(xiàng)的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案