如圖所示,四邊形ABCD是矩形,,F(xiàn)為CE上的點(diǎn),且BF平面ACE,AC與BD交于點(diǎn)G
(1)求證:AE平面BCE
(2)求證:AE//平面BFD
(1)先證BF AE (2)先證GF//AE
解析試題分析:(1)∵ 又知四邊形ABCD是矩形,故AD//BC
∴ 故可知
∵ BF平面ACE ∴ BF AE
又
∴ AE平面BCE
(2) 依題意,易知G為AC的中點(diǎn)
又∵ BF平面ACE 所以可知 BFEC, 又BE=EC
∴ 可知F為CE的中點(diǎn) , 故可知 GF//AE
又可知
∴ AE//平面BFD
考點(diǎn):直線與平面平行的判定;直線與平面垂直的性質(zhì);平面與平面垂直的性質(zhì).
點(diǎn)評(píng):本題通過(guò)線線平行和線面平行,線線垂直和線面垂直及面面垂直的轉(zhuǎn)化,來(lái)考查線面、面面平行和垂直的判定定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,平面四邊形的4個(gè)頂點(diǎn)都在球的表面上,為球的直徑,為球面上一點(diǎn),且平面 ,,點(diǎn)為的中點(diǎn).
(1) 證明:平面平面;
(2) 求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在等腰直角三角形中,,,分別是上的點(diǎn),,
為的中點(diǎn).將沿折起,得到如圖2所示的四棱錐,其中.
(Ⅰ) 證明:平面;
(Ⅱ) 求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線段BC1存在點(diǎn)D,使得AD⊥A1B,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,ABCD是邊長(zhǎng)為2的正方形,ED⊥平面ABCD, ED="1," EF//BD且2EF=BD.
(1)求證:平面EAC⊥平面BDEF;
(2)求幾何體ABCDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐P-ABCD的三視圖如下圖所示,E是側(cè)棱PC上的動(dòng)點(diǎn).
(1)求四棱錐P-ABCD的體積;
(2)是否不論點(diǎn)E在何位置,都有BD⊥AE?證明你的結(jié)論;
(3)若點(diǎn)E為PC的中點(diǎn),求二面角D-AE-B的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱的所有棱長(zhǎng)都為,且平面,為中點(diǎn).
(Ⅰ)求證:面;
(Ⅱ)求二面角的大小的余弦值;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在底面是直角梯形的四棱錐S-ABCD中,
(1)求四棱錐S-ABCD的體積;
(2)求證:
(3)求SC與底面ABCD所成角的正切值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=,求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com