(2012•江西模擬)已知函數(shù)f(x)=
ex-ax
,g(x)=alnx+a.
(1)a=1時(shí),求F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)若x>1時(shí),函數(shù)y=f(x)的圖象總在函數(shù)y=g(x)的圖象的上方,求實(shí)數(shù)a的取值范圍.
分析:(1)確定函數(shù)F(x)=
ex-1
x
-lnx-1(x>0)
,求導(dǎo)函數(shù),利用F'(x)≥0,確定函數(shù)的單調(diào)增區(qū)間;F'(x)≤0,確定函數(shù)的單調(diào)減區(qū)間;
(2)構(gòu)造F(x)=f(x)-g(x)(x>1),若x>1時(shí),函數(shù)y=f(x)的圖象總在函數(shù)y=g(x)的圖象的上方,即F(x)>0恒成立,求出導(dǎo)函數(shù)F′(x)=
(x-1)(ex-a)
x2
.分類(lèi)討論,確定函數(shù)的最小值,從而可求實(shí)數(shù)a的取值范圍.
解答:解:(1)a=1時(shí),F(x)=
ex-1
x
-lnx-1(x>0)
,
F′(x)=
xex-(ex-1)
x2
-
1
x
=
(x-1)(ex-1)
x2
…(3分)
令F'(x)≥0有:x≤0(舍去)或x≥1;令F'(x)≤0有0≤x≤1…(5分)
故F(x)的單增區(qū)間為[1,+∞);單減區(qū)間為(0,1].…(6分)
(2)構(gòu)造F(x)=f(x)-g(x)(x>1),即F(x)=
ex-a
x
-alnx-a(x>1)

F′(x)=
(x-1)(ex-a)
x2

①當(dāng)a≤e時(shí),ex-a>0成立,則x>1時(shí),F(xiàn)'(x)>0,即F(x)在(1,+∞)上單增,…(7分)
令F(1)=e-a-a≥0,∴a≤
1
2
e
,故a≤
1
2
e
…(8分)
②a>e時(shí),F(xiàn)'(x)=0有x=1或x=lna>1
令F'(x)≥0有x≤1或x≥lna;令F'(x)≤0有1≤x≤lna…(9分)
即F(x)在(1,lna]上單減;在[lna,+∞)上單增…(10分)
故F(x)min=F(lna)=-aln(lna)-a>0,∴a<e
1
e
,舍去…(11分)
綜上所述,實(shí)數(shù)a的取值范圍a≤
1
2
e
…(12分)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,考查函數(shù)的最值,解題的關(guān)鍵是構(gòu)造函數(shù),確定函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西模擬)球O的球面上有四點(diǎn)S,A,B,C,其中O,A,B,C四點(diǎn)共面,△ABC是邊長(zhǎng)為2的正三角形,面SAB⊥面ABC,則棱錐S-ABC的體積的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西模擬)在△ABC中,P是BC邊中點(diǎn),角A、B、C的對(duì)邊分別是a、b、c,若c
AC
+a
PA
+b
PB
=
0
,則△ABC的形狀為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西模擬)已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,公差為d,Sn 為其前n項(xiàng)和,且滿(mǎn)足an2=S2n-1,n∈N*.?dāng)?shù)列{bn}滿(mǎn)足bn=
1anan+1
,Tn為數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式和Tn;
(2)是否存在正整數(shù)m,n(1<m<n),使得T1,Tm,Tn,成等比數(shù)列?若存在,求出所有m,n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西模擬)已知函數(shù)f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,將函數(shù)f(x)向左平移
π
6
個(gè)單位后得函數(shù)g(x),設(shè)△ABC三個(gè)角A、B、C的對(duì)邊分別為a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
,
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西模擬)過(guò)雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)
的右頂點(diǎn)A作斜率為-1的直線(xiàn),該直線(xiàn)與雙曲線(xiàn)的兩條漸進(jìn)線(xiàn)的交點(diǎn)分別為B、C.若
AB
=
1
2
BC
,則雙曲線(xiàn)的離心率是
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案