已知函數(shù)f(x)=
1
lg(5x+
4
5x
+m)
的定義域為R,則實數(shù)m的取值范圍是( 。
A.(-3,+∞)B.(-∞,-3)C.(-4,+∞)D.(-∞,-2)
∵5x>0,∴5x+
4
5x
≥4,當且僅當5x=
4
5x
,即x=log52時取等號,
根據(jù)負數(shù)和0沒有對數(shù)得:5x+
4
5x
+m≥4+m>0,解得m>-4,
又根據(jù)分母不為0得到:5x+
4
5x
+m≠1,令5x=t>0,化為t+
4
t
+m≠1,
∵t>0,∴當t2+(m-1)t+4=0沒有解或解為負數(shù)時,t2+(m-1)t+4≠0,
若△=(m-1)2-16<0,解得:-3<m<5,方程無解,滿足題意;
若t2+(m-1)t+4=0沒有正數(shù)解,根據(jù)兩根之積為4>0,得到兩根為同號,
故要保證兩根為負數(shù),需兩根之和1-m<0,解得m>1,
綜上,實數(shù)m的范圍是m>-3,
則實數(shù)m的取值范圍是(-3,+∞).
故選A
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實數(shù)x的取值范圍是( 。
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實數(shù)a的取值范圍;
(2)當a=1時,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當a=1時,求證對任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是(  )

查看答案和解析>>

同步練習冊答案