“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路 ”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯(lián)表:

 

男性

女性

合計

反感

10

 

 

不反感

 

8

 

合計

 

 

30

 

已知在這30人中隨機抽取1人抽到反感“中國式過馬路 ”的路人的概率是.

(Ⅰ)請將上面的列表補充完整(在答題卡上直接填寫結果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路 ”與性別是否有關?(

<2.706時,沒有充分的證據(jù)判定變量性別有關,當>2.706時,有90%的把握判定變量性別有關,當>3.841時,有95%的把握判定變量性別有關,當>6.635時,有99%的把握判定變量性別有關)

(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學期望.

 

【答案】

(Ⅰ) 沒有充足的理由認為反感“中國式過馬路”與性別有關

(Ⅱ)

0

1

2

的數(shù)學期望為:

【解析】

試題分析:(Ⅰ)

 

男性

女性

合計

反感

10

6

16

不反感

6

8

14

合計

16

14

30

由已知數(shù)據(jù)得:,

所以,沒有充足的理由認為反感“中國式過馬路”與性別有關.

(Ⅱ)的可能取值為

 

                                

所以的分布列為:

0

1

2

的數(shù)學期望為:     

考點:分布列期望與獨立性檢驗

點評:求分布列的步驟:找到隨機變量可以取得值,求出各值對應的概率,匯總成分布列;獨立性檢驗的求解步驟:寫出分類變量的列聯(lián)表,求出觀測值,比較數(shù)據(jù)得到結論

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯(lián)表:
男性 女性 合計
反感 10
6
6
16
16
不反感
6
6
8
14
14
合計
16
16
14
14
30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(Ⅰ)請將上面的列聯(lián)表補充完整(在答題卡上直接填寫結果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關?
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學期望.
提示:可參考試卷第一頁的公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯(lián)表:
男性 女性 合計
反感 10
不反感 8
合計 30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(Ⅰ)請將上面的列聯(lián)表補充完整(在答題卷上直接填寫結果,不需要寫求解過程),并據(jù)此資料判斷是否有95%的把握認為反感“中國式過馬路”與性別有關?
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列.
附:,其中

P(K2≥k0
0.15 0.10 0.05 0.025 0.010
k0 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯(lián)表:
男性 女性 合計
反感 10
不反感 8
合計 30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是
8
15

(Ⅰ)請將上面的列表補充完整(在答題卡上直接填寫結果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路”與性別是否有關?(x2=
(a+b+c+d)(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,當Χ2<2.706時,沒有充分的證據(jù)判定變量性別有關,當Χ2>2.706時,有90%的把握判定變量性別有關,當Χ2>3.841時,有95%的把握判定變量性別有關,當Χ2>6.635時,有99%的把握判定變量性別有關)
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆甘肅省高二下學期期末考試理科數(shù)學試卷(解析版) 題型:解答題

“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯(lián)表:

 

男性

女性

合計

反感

10

 

 

不反感

 

8

 

合計

 

 

30

已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是

(Ⅰ)請將上面的列聯(lián)表補充完整(在答題卡上直接填寫結果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路 ”與性別是否有關?

(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學期望.

P(K2>k)

0.05

0.025

0.010

0.005

k

3.841

5.024

6.635

7.879

下面的臨界值表供參考:

(參考公式:K2=,其中n="a+b+c+d)"

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆安徽省高二下學期期末質檢理科數(shù)學試卷(解析版) 題型:解答題

“中國式過馬路”存在很大的交通安全隱患.某調查機構為了解路人對“中國式過馬路 ”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調查,得到了如下列聯(lián)表:

 

男性

女性

合計

反感

10

 

不反感

8

 

合計

 

 

30

已知在這30人中隨機抽取1人抽到反感“中國式過馬路 ”的路人的概率是.

(Ⅰ)請將上面的2×2列聯(lián)表補充完整(在答題卡上直接填寫結果,不需要寫求解過程),并據(jù)此資料分析反感“中國式過馬路 ”與性別是否有關?

(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列和數(shù)學期望.

參考數(shù)據(jù)和公式:

2×2列聯(lián)表公式:,的臨界值表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

查看答案和解析>>

同步練習冊答案