已知向量
a
b
,滿足|
a
|=|
b
|=2,
a
b
的夾角為120°,則|
a
-
b
|的值為( 。
分析:先利用兩個向量的數(shù)量積的定義求得 
a
b
的值,再根據(jù)|
a
-
b
|=
(
a
-
b
)
2
=
a
2
-2
a
b
+b2
,運算求得結(jié)果.
解答:解:由題意可得
a
b
=2×2×cos120°=-2,
故|
a
-
b
|=
(
a
-
b
)
2
=
a
2
-2
a
b
+b2
=
4+4+4
=2
3
,
故選C.
點評:本題主要考查兩個向量的數(shù)量積的定義,求向量的模的方法,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
,滿足|
a
|=1,|
b
|=1
,|k
a
+
b
|=
3
|
a
-k
b
|
,k>0,
(1)用k表示
a
b
,并求
a
b
的夾角θ的最大值;
(2)如果
a
b
,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
,滿足
a
=(1,2),
b
=(-2,1).
(1)求向量
a
-
b
的坐標,以及向量
a
-
b
a
的夾角;
(2)若向量
a
-
b
k
a
+
b
垂直,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•藍山縣模擬)已知向量
a
,
b
,滿足(
a
+2
b
)(
a
-
b
)=-6,且|
a
|=1,|
b
|=2,則
a
b
的夾角為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
b
,滿足|
a
|=2,|
b
|=1
,且(
a
+
b
)⊥(
a
-
5
2
b
)
,則
a
b
的夾角為
 

查看答案和解析>>

同步練習冊答案