精英家教網 > 高中數學 > 題目詳情
(2011•南昌模擬)設函數f(x)=xsinx(x∈R).
(1)證明:f(x+2kπ)-f(x)=2kπsinx,k∈Z;
(2)設x0為f(x)的一個極值點,證明[f(x0)]2=
x
4
0
1+
x
2
0
分析:(1)由f(x+2kπ)-f(x)=(x+2kπ)Sin(x+2kπ)-xSinx,能夠證明f(x+2kπ)-f(x)=2kπsinx.
(2)由f'(x)=Sinx+xSinx得:f'(x0)=Sinx0+x0Sinx0=0,由Sin2x0+cos2x0=1聯(lián)立得:Sin2x0=
x
2
0
1+
x
2
0
,由此能夠證明[f(x0)]2=
x
4
0
1+
x
2
0
解答:解:(1)f(x+2kπ)-f(x)
=(x+2kπ)Sin(x+2kπ)-xSinx
=(x+2kπ)Sinx-xSinx
=xSinx+2kπSinx-xSinx
=2kπSinx…(6分)
(2)由f'(x)=sinx+xcosx,
得:f'(x0)=sinx0+x0cosx0=0…(8分)
又sin2x0+cos2x0=1聯(lián)立,
得:Sin2x0=
x
2
0
1+
x
2
0
…(12分)
∴[f(x0)]2=x02Sin2x0=
x
2
0
×
x
2
0
1+
x
2
0
=
x
4
0
1+
x
2
0
…(14分)
點評:本題考查同角三角函數間的基本關系,是基礎題.解題時要認真審題,仔細解答,注意合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•南昌模擬)在銳角△ABC中,BC=1,∠B=2∠A,則AC的取值范圍為
2
,
3
2
,
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•南昌模擬)已知
a
=(
3
,-1),
b
=(
1
2
,
3
2
),且存在實數k和t,使得
x
=
a
+(t2-3)
b
,
y
=-k
a
+t
b
,且
x
y
,試求
k+t2
t
的最值.

查看答案和解析>>

同步練習冊答案