已知A(-1,1)、B(3,1)、C(1,3),則△ABC的BC邊上的高所在直線方程為
 
分析:利用BC邊上的高所在直線過點A(-1,1),斜率為
-1
KBC
,用點斜式寫出BC邊上的高所在直線方程,并化為一般式.
解答:解:BC邊上的高所在直線過點A(-1,1),斜率為
-1
KBC
=
-1
3-1
1-3
=1,由點斜式寫出BC邊上的高所在直線方程為
y-1=x+1,即 x-y+2=0,
故答案為:x-y+2=0.
點評:本題考查兩直線垂直時,斜率間的關系,用點斜式求直線方程的方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知A(1,1),B(4,3),C(2m,m-1),
(Ⅰ)若A,B,C可構成三角形,求實數(shù)m所要滿足的條件;
(Ⅱ)若A,B,C,構成以∠C為直角的直角三角形,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點P(x,y)在平行四邊形ABCD內(nèi),已知A(-1,-1),B(2,1),D(0,2),則z=2x+y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合An={1,3,7,…,(2n-1)}(n∈N*),若從集合An中任取k(k=1,2,3,…,n)個數(shù),其所有可能的k個數(shù)的乘積的和為TK(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+T3+…+Tn.例如當n=1時,A1={1},T1=1,S1=1;當n=2時,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7.則Sn=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(Ⅰ)已知a+a-1=3,求a2+a-2的值;
(Ⅱ)化簡求值:1.10+
364
-0.5-2+lg25+2lg2;
(Ⅲ)解不等式:log2(x+1)<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a、b是不共線的向量,若1a+b,=a+λ2b(λ1、λ2∈R)則A、B、C三點共線的充要條件為(    )

A.λ12=-1                              B.λ12=1

C.λ1λ2-1=0                              D.λ1·λ2+1=0

查看答案和解析>>

同步練習冊答案