(10分)求下列函數(shù)的導(dǎo)數(shù)
      ②

解:① =
② 

解析試題分析:(1)根據(jù)多項(xiàng)式的導(dǎo)數(shù),等于各個(gè)項(xiàng)的導(dǎo)數(shù)的和。積的導(dǎo)數(shù)等于前導(dǎo)后不導(dǎo),加上前不導(dǎo)乘以后導(dǎo) ,得到。(2)利用商的導(dǎo)數(shù),等于分母平方分之上導(dǎo)下不導(dǎo),減去上不導(dǎo)下導(dǎo)來(lái)得到。
解:① =
② 
考點(diǎn):本試題主要考查了基本初等函數(shù)的導(dǎo)數(shù)的求解。
點(diǎn)評(píng):解決該試題的關(guān)鍵是能準(zhǔn)確利用導(dǎo)數(shù)的四則運(yùn)算法則,求解和差積商 的導(dǎo)數(shù)的問(wèn)題,熟練記憶基本初等函數(shù)的導(dǎo)數(shù)是很重要的。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)
已知函數(shù)處有極小值。
(1)求函數(shù)的解析式;
(2)若函數(shù)只有一個(gè)零點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題共13分)設(shè)k∈R,函數(shù)   ,,x∈R.試討論函數(shù)F(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)
設(shè)函數(shù)的圖像與直線(xiàn)相切于點(diǎn).
(Ⅰ)求的值;
(Ⅱ)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分10分)(1)求函數(shù)的導(dǎo)數(shù).
(2)求函數(shù)f(x)=在區(qū)間[0,3]上的積分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是函數(shù)的一個(gè)極值點(diǎn)。
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線(xiàn)與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題16分)已知函數(shù)滿(mǎn)足滿(mǎn)足;
(1)求的解析式及單調(diào)區(qū)間;
(2)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分14分)
已知函數(shù)(),.
(Ⅰ)當(dāng)時(shí),解關(guān)于的不等式:;
(Ⅱ)當(dāng)時(shí),記,過(guò)點(diǎn)是否存在函數(shù)圖象的切線(xiàn)?若存在,有多少條?若不存在,說(shuō)明理由;
(Ⅲ)若是使恒成立的最小值,對(duì)任意,
試比較的大小(常數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分13分)已知函數(shù)
(1)若的極值點(diǎn),求實(shí)數(shù)的值;
(2)若上為增函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),方程有實(shí)根,求實(shí)數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案