已知正方形ABCD的邊長為1,沿對角線AC把△ACD折起,當(dāng)以A,B,C,D四點(diǎn)為頂點(diǎn)的三棱錐體積最大時(shí),直線BD和平面ABC所成的角的大小為   
【答案】分析:先作出直線BD與面ABC所成角,計(jì)算三棱錐的體積,求出其最大值,可得△BOD是等腰Rt△,從而可得結(jié)論.
解答:解:如圖所示,O為正方形ABCD的中心,
∵BO⊥AC,DO⊥AC,
∴AC⊥面BOD,
∵AC?面ABC,∴面BOD⊥面ABC
∴BD在面ABC的射影是BO,∠BDO=φ是直線BD與面ABC所成角.
設(shè)∠BOD=θ(0°<θ<180°),正方形ABCD的邊長為1,則BO=DO=
∴△BOD的面積=BO×DO×sinθ=sinθ.
∴三棱錐體積=S△BOD×AC=sinθ≤,
∴θ=90°時(shí),三棱錐體積最大,此時(shí)△BOD是等腰Rt△,
∴φ=45°,即當(dāng)A,B,C,D四點(diǎn)為頂點(diǎn)的三棱錐體積最大時(shí)候,直線BD與面ABC所成角為45°.
故答案為
點(diǎn)評:本題考查平面圖形的翻折,考查三棱錐體積的計(jì)算,考查線面角,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為2,中心為O,四邊形PACE是直角梯形,設(shè)PA⊥平面ABCD,且PA=2,CE=1,
(1)求證:面PAD∥面BCE.
(2)求PO與平面PAD所成角的正弦.
(3)求二面角P-EB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的中心為E(-1,0),一邊AB所在的直線方程為x+3y-5=0,求其它三邊所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長是4,對角線AC與BD交于O,將正方形ABCD沿對角線BD折成60°的二面角,并給出下面結(jié)論:①AC⊥BD;②AD⊥CO;③△AOC為正三角形;④cos∠ADC=
3
4
,則其中的真命題是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為1,設(shè)
AB
=
a
BC
=
b
,
AC
=
c
,則|
a
-
b
+
c
|等于(  )
A、0
B、
2
C、2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長為
2
AB
=
a
,
BC
=
b
,
AC
=
c
,則|
a
+
b
+
c
|
=
4
4

查看答案和解析>>

同步練習(xí)冊答案