化簡
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11
2
π-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
9
2
π+α)
分析:利用誘導(dǎo)公式化簡要求的式子,從而得出結(jié)論.
解答:解:
sin(2π-α)cos(π+α)cos(
π
2
+α)cos(
11
2
π-α)
cos(π-α)sin(3π-α)sin(-π-α)sin(
9
2
π+α)
=
-sinα•(-cosα)(-sinα)(-sinα)
-cosα•sinα•sinα•cosα
=-tanα.
點(diǎn)評:本題主要考查應(yīng)用誘導(dǎo)公式化簡三角函數(shù)式,要特別注意符號的選取,這是解題的易錯點(diǎn).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡
sin(2π-α)•sin(π+α)•cos(-π+α)sin(3π-α)•cos(π+α)

(2)求函數(shù)y=2-sin2x+cosx的最大值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡sin(
π
2
+α)
等于( 。
A、cosαB、sinα
C、-cosαD、-sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡
sin(2π-α)cos(π+α)
cos(α-π)cos(
π
2
-α)
;
(2)tanx=2,求2sin2x-sinxcosx+cos2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡
sin(2π-α)cos(π+α)
cos(π-α)sin(3π-α)sin(-α-π)
;
(2)求值:
3
tan12°-3
sin12°(4cos212°-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
sin(α-
π
2
)cos(
2
+α)tan(π-α)
tan(-π-α)sin(-π-α)
=
-cosα
-cosα

查看答案和解析>>

同步練習(xí)冊答案