在解析幾何里,圓心在點(x0,y0),半徑是r(r>0)的圓的標準方程是(x-x02+(y-y02=r2.類比圓的標準方程,研究對稱軸平行于坐標軸的橢圓的標準方程,可以得出的正確結論是:“設橢圓的中心在點(x0,y0),焦點在直線y=y0上,長半軸長為a,短半軸長為b(a>b>0),其標準方程為______.
在由圓的性質類比圓的性質時,一般地,由圓的標準方程,類比推理橢圓的標準方程;由圓的幾何性質,
故由:“圓心在點(x0,y0),半徑是r(r>0)的圓的標準方程是(x-x02+(y-y02=r2”,
類比到橢圓可得的結論是:
設橢圓的中心在點(x0,y0),焦點在直線y=y0上,長半軸長為a,短半軸長為b(a>b>0),其標準方程為
(x-x0)2
a2
+
(y-y0)2
b2
=1.
故答案為:
(x-x0)2
a2
+
(y-y0)2
b2
=1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在解析幾何里,圓心在點(x0,y0),半徑是r(r>0)的圓的標準方程是(x-x02+(y-y02=r2.類比圓的標準方程,研究對稱軸平行于坐標軸的橢圓的標準方程,可以得出的正確結論是:“設橢圓的中心在點(x0,y0),焦點在直線y=y0上,長半軸長為a,短半軸長為b(a>b>0),其標準方程為
(x-x0)2
a2
+
(y-y0)2
b2
=1
(x-x0)2
a2
+
(y-y0)2
b2
=1

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年北京市西城區(qū)(北區(qū))高二(下)期末數(shù)學試卷(理科)(解析版) 題型:填空題

在解析幾何里,圓心在點(x,y),半徑是r(r>0)的圓的標準方程是(x-x2+(y-y2=r2.類比圓的標準方程,研究對稱軸平行于坐標軸的橢圓的標準方程,可以得出的正確結論是:“設橢圓的中心在點(x,y),焦點在直線y=y上,長半軸長為a,短半軸長為b(a>b>0),其標準方程為   

查看答案和解析>>

同步練習冊答案