【題目】已知函數(shù).
(1)若在定義域內(nèi)單調(diào)遞增,求的取值范圍;
(2)若,且滿足,問:函數(shù)在處的導(dǎo)數(shù)能否為0?若能,求出處的導(dǎo)數(shù);若不能,請(qǐng)說明理由.
【答案】(1)(2)函數(shù)在處的導(dǎo)數(shù)不能為0,理由見解析
【解析】
(1)由解析式易知定義域?yàn)?/span>,則轉(zhuǎn)化問題為在上恒成立,根據(jù)均值不等式可得,即可求解;
(2)假設(shè),則有,由①②整理可得,即,設(shè),,利用導(dǎo)函數(shù)判斷的范圍,即可判斷假設(shè)是否成立.
解:(1)由題得,函數(shù)的定義域是,且在定義域內(nèi)單調(diào)遞增,
所以在上恒成立,
因?yàn)?/span>,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,
所以,所以,
解得,
故的取值范圍是.
(2)不能,理由如下:
假設(shè),則由題得,
①②得,
即,
又因?yàn)?/span>,
所以,
所以,
所以,③
設(shè),,
則③式變?yōu)?/span>,
設(shè),
則,
所以函數(shù)在上單調(diào)遞增,
即,
也就是,此式與③矛盾,
故函數(shù)在處的導(dǎo)數(shù)不能為0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,左右頂點(diǎn)分別為,,上頂點(diǎn)為,
(1)求橢圓離心率;
(2)點(diǎn)到直線的距離為,求橢圓方程;
(3)在(2)的條件下,點(diǎn)在橢圓上且異于、兩點(diǎn),直線與直線交于點(diǎn),說明運(yùn)動(dòng)時(shí)以為直徑的圓與直線的位置關(guān)系,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】超級(jí)細(xì)菌是一種耐藥性細(xì)菌,產(chǎn)生超級(jí)細(xì)菌的主要原因是用于抵抗細(xì)菌侵蝕的藥物越來越多,但是由于濫用抗生素的現(xiàn)象不斷的發(fā)生,很多致病菌也對(duì)相應(yīng)的抗生素產(chǎn)生了耐藥性,更可怕的是,抗生素藥物對(duì)它起不到什么作用,病人會(huì)因?yàn)楦腥径鹂膳碌难装Y,高燒,痙攣,昏迷甚至死亡.某藥物研究所為篩查某種超級(jí)細(xì)菌,需要檢驗(yàn)血液是否為陽性,現(xiàn)有n()份血液樣本,每個(gè)樣本取到的可能性相等,有以下兩種檢驗(yàn)方式:(1)逐份檢驗(yàn),則需要檢驗(yàn)n次;(2)混合檢驗(yàn),將其中k(且)份血液樣本分別取樣混合在一起檢驗(yàn),若檢驗(yàn)結(jié)果為陰性,則這份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了;如果檢驗(yàn)結(jié)果為陽性,為了明確這k份血液究竟哪幾份為陽性,就要對(duì)這k份血液再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為次.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽性還是陰性都是獨(dú)立的,且每份樣本是陽性結(jié)果的概率為p().現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.
(1)運(yùn)用概率統(tǒng)計(jì)的知識(shí),若,試求P關(guān)于k的函數(shù)關(guān)系式;
(2)若P與抗生素計(jì)量相關(guān),其中,,…,()是不同的正實(shí)數(shù),滿足,對(duì)任意的(),都有.
(i)證明:為等比數(shù)列;
(ii)當(dāng)時(shí),采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求k的最大值.
參考數(shù)據(jù):,,,,,
,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,正確的是( )
A.若輸入a,b,c的值依次為1,2,4,則輸出的值為5
B.若輸入a,b,c的值依次為2,3,5,則輸出的值為7
C.若輸入a,b,c的值依次為3,4,5,則輸出的值為15
D.若輸入a,b,c的值依次為2,3,4,則輸出的值為10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓 的左右焦點(diǎn)分別為的、,離心率為;過拋物線焦點(diǎn)的直線交拋物線于、兩點(diǎn),當(dāng)時(shí), 點(diǎn)在軸上的射影為。連結(jié)并延長(zhǎng)分別交于、兩點(diǎn),連接; 與的面積分別記為, ,設(shè).
(Ⅰ)求橢圓和拋物線的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人經(jīng)營(yíng)淡水池塘養(yǎng)草魚,根據(jù)過去期的養(yǎng)殖檔案,該池塘的養(yǎng)殖重量(百斤)都在百斤以上,其中不足百斤的有期,不低于百斤且不超過百斤的有期,超過百斤的有期.根據(jù)統(tǒng)計(jì),該池塘的草魚重量的增加量(百斤)與使用某種餌料的質(zhì)量(百斤)之間的關(guān)系如圖所示.
(1)根據(jù)數(shù)據(jù)可知與具有線性相關(guān)關(guān)系,請(qǐng)建立關(guān)于的回歸方程;如果此人設(shè)想使用某種餌料百斤時(shí),草魚重量的增加量須多于百斤,請(qǐng)根據(jù)回歸方程計(jì)算,確定此方案是否可行?并說明理由.
(2)養(yǎng)魚的池塘對(duì)水質(zhì)含氧量與新鮮度要求較高,某商家為該養(yǎng)殖戶提供收費(fèi)服務(wù),即提供不超過臺(tái)增氧沖水機(jī),每期養(yǎng)殖使用的沖水機(jī)運(yùn)行臺(tái)數(shù)與魚塘的魚重量有如下關(guān)系:
魚的重量(單位:百斤) | |||
沖水機(jī)只需運(yùn)行臺(tái)數(shù) |
若某臺(tái)增氧沖水機(jī)運(yùn)行,則商家每期可獲利千元;若某臺(tái)沖水機(jī)未運(yùn)行,則商家每期虧損千元.視頻率為概率,商家欲使每期沖水機(jī)總利潤(rùn)的均值達(dá)到最大,應(yīng)提供幾臺(tái)增氧沖水機(jī)?
附:對(duì)于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘估計(jì)公式分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,,為自然對(duì)數(shù)的底數(shù).
若,,①若函數(shù)單調(diào)遞增,求實(shí)數(shù)的取值范圍;②若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.
若,且存在兩個(gè)極值點(diǎn),,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是平面的斜線段,A為斜足,點(diǎn)C滿足,且在平面內(nèi)運(yùn)動(dòng),則有以下幾個(gè)命題:
①當(dāng)時(shí),點(diǎn)C的軌跡是拋物線;
②當(dāng)時(shí),點(diǎn)C的軌跡是一條直線;
③當(dāng)時(shí),點(diǎn)C的軌跡是圓;
④當(dāng)時(shí),點(diǎn)C的軌跡是橢圓;
⑤當(dāng)時(shí),點(diǎn)C的軌跡是雙曲線.
其中正確的命題是__________.(將所有正確的命題序號(hào)填到橫線上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,其中為歐拉數(shù),,為未知實(shí)數(shù),且.如果和均為函數(shù)的單調(diào)區(qū)間.
(1)求;
(2)若函數(shù)在上有極值點(diǎn),為實(shí)數(shù),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com