【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,已知直線的參數(shù)方程為為參數(shù),),以原點為極點,以軸正半軸建立極坐標系,曲線的極坐標系方程為.

1)寫出直線的極坐標方程和曲線的直角坐標方程;

2)若直線與曲線相交于兩點,求的值.

【答案】1)直線的極坐標方程為:,曲線的直角坐標方程2

【解析】

試題(1)由直線參數(shù)方程幾何意義得直線傾斜角為,故直線的極坐標方程為:,利用將極坐標方程化為直角坐標方程2)由極坐標極徑含義:,因此只需聯(lián)立直線與曲線極坐標方程即可:,,代入化簡得

試題解析:解:(1)由得,

時,直線其極坐標方程為

時,消去參數(shù)

所以,直線是過原點且傾斜角為的直線,故直線的極坐標方程為:

綜上所述,直線的極坐標方程為:.

,即.

2)設,解方程組,則

解方程組,則,

于是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)yf(x)在R上的圖象是連續(xù)不斷的一條曲線,且圖象關于原點對稱,其導函數(shù)為f'(x),當x0時,x2f'(x)>﹣2xf(x)成立,若xR,e2xf(ex)﹣a2x2f(ax)>0恒成立,則a的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方形SG1G2G3中,E、F分別是G1G2G2G3的中點,DEF的中點,現(xiàn)在沿SESFEF把這個正方形折成一個四面體,使G1、G2、G3三點重合,重合后的點記為G,那么,在四面體SEFG中必有(

A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面

C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)設函數(shù),試討論函數(shù)零點的個數(shù);

(2)若,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個零點.

1)求實數(shù)的取值范圍;

2)設、的兩個零點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點、點及拋物線.

1)若直線過點及拋物線上一點,當最大時求直線的方程;

2軸上是否存在點,使得過點的任一條直線與拋物線交于點,且點到直線的距離相等?若存在,求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,平面,,,的中點,的中點.

(Ⅰ)證明:平面;

(Ⅱ)是線段上一點,且直線與平面所成角的正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點是橢圓的一個頂點,的長軸是圓的直徑,、是過點且互相垂直的兩條直線,其中交圓、兩點,交橢圓于另一點.

1)求橢圓的方程;

2)求面積的最大值及取得最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020210:00時,英國順利“脫歐”.在此之前,英國“脫歐”這件國際大事被社會各界廣泛關注,英國大選之后,曾預計將會在2020131日完成“脫歐”,但是因為之前“脫歐”一直被延時,所以很多人認為并不能如期完成,某媒體隨機在人群中抽取了100人做調(diào)查,其中40歲以上的55人中有10人認為不能完成,40歲以下的人中認為能完成的占.

1)完成列聯(lián)表,并回答能否有90%的把握認為“預測國際大事的準確率與年齡有關”?

能完成

不能完成

合計

40歲以上

40歲以下

合計

2)從上述100人中,采用按年齡分層抽樣的方法,抽取20人,從這20人中再選取40歲以下的2人做深度調(diào)査,則2人中恰有1人認為英國能夠完成“脫歐”的概率為多少?

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

參考公式為:

查看答案和解析>>

同步練習冊答案