已知將一枚質(zhì)地不均勻的硬幣拋擲三次,三次正面均朝上的概率為

   (1)求拋擲這樣的硬幣三次,恰有兩次正面朝上的概率;

   (2)拋擲這樣的硬幣三次后,拋擲一枚質(zhì)地均勻的硬幣一次,記四次拋擲后正面朝上的總次數(shù)為ξ,求隨機變量ξ的分布列及期望Eξ.

解:(1)設(shè)拋擲一次這樣的硬幣,正面朝上的概率為P,依題意有:

      

       所以,拋擲這樣的硬幣三次,恰有兩次正面朝上的概率為

        

   (2)隨機變量ξ的可能取值為0,1,2,3,4.

      

      

       所以ξ的分布列為      

ξ

0

1

2

3

4

P

       Eξ=0×+1×+2×+3×+4×=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知將一枚質(zhì)地不均勻的硬幣拋擲四次,正面均朝上的概率為
181
.若將這枚硬幣拋擲三次,則恰有兩次正面朝上的概率是
 
(用分?jǐn)?shù)作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年萊西一中模擬理)(12分)

    已知將一枚質(zhì)地不均勻的硬幣拋擲三次,三次正面均朝上的概率為

   (1)求拋擲這樣的硬幣三次,恰有兩次正面朝上的概率;

   (2)拋擲這樣的硬幣三次后,拋擲一枚質(zhì)地均勻的硬幣一次,記四次拋擲后正面朝上的總次數(shù)為ξ,求隨機變量ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年鄞州中學(xué)模擬理)(14分) 已知將一枚質(zhì)地不均勻的硬幣拋擲三次,三次正面均朝上的概率為

   (1)求拋擲這樣的硬幣三次,恰有兩次正面朝上的概率;

   (2)拋擲這樣的硬幣三次后,拋擲一枚質(zhì)地均勻的硬幣一次,記四次拋擲后正面朝上的總次數(shù)為ξ,求隨機變量ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知將一枚質(zhì)地不均勻的硬幣拋擲三次,三次正面均朝上的概率為

   (1)求拋擲這樣的硬幣三次,恰有兩次正面朝上的概率;

   (2)拋擲這樣的硬幣三次后,拋擲一枚質(zhì)地均勻的硬幣一次,記四次拋擲后正面朝上的總次數(shù)為ξ,求隨機變量ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知將一枚質(zhì)地不均勻的硬幣拋擲三次,三次正面均朝上的概率為

   (1)求拋擲這樣的硬幣三次,恰有兩次正面朝上的概率;

   (2)拋擲這樣的硬幣三次后,拋擲一枚質(zhì)地均勻的硬幣一次,記四次拋擲后正面朝上的總次數(shù)為ξ,求隨機變量ξ的分布列及期望Eξ.

查看答案和解析>>

同步練習(xí)冊答案