已知圓C1的圓心在坐標原點O,且恰好與直線l1x-y-2
2
=0
相切.
(Ⅰ)求圓的標準方程;
(Ⅱ)設(shè)點A(x0,y0)為圓上任意一點,AN⊥x軸于N,若動點Q滿足
OQ
=m
OA
+n
ON
,(其中m+n=1,m,n≠0,m為常數(shù)),試求動點Q的軌跡方程C2;
(Ⅲ)在(Ⅱ)的結(jié)論下,當m=
3
2
時,得到曲線C,問是否存在與l1垂直的一條直線l與曲線C交于B、D兩點,且∠BOD為鈍角,請說明理由.
分析:(Ⅰ)根據(jù)圓與直線l1x-y-2
2
=0
相切,利用點到直線的距離,求出圓的半徑,從而可求圓C1的方程;
(Ⅱ)設(shè)出點的坐標,利用向量條件,確定動點坐標之間的關(guān)系,利用A為圓上的點,即可求得動點Q的軌跡方程C2;
(Ⅲ)m=
3
2
時,曲線C方程為
x2
4
+
y2
3
=1
,假設(shè)直線l的方程,與橢圓
x2
4
+
y2
3
=1
聯(lián)立,利用韋達定理及向量條件,利用數(shù)量積小于0,即可得到結(jié)論.
解答:解:(Ⅰ)設(shè)圓的半徑為r,圓心到直線l1距離為d,則d=
|-2
2
|
12+12
=2
…(2分)
所以圓C1的方程為x2+y2=4…(3分)
(Ⅱ)設(shè)動點Q(x,y),A(x0,y0),AN⊥x軸于N,N(x0,0)
由題意,(x,y)=m(x0,y0)+n(x0,0),所以
x=(m+n)x0=x0
y=my0
…(5分)
即:
x0=x
y0=
1
m
y
,將A(x,
1
m
y)
代入x2+y2=4,得
x2
4
+
y2
4m2
=1
…(7分)
(Ⅲ)m=
3
2
時,曲線C方程為
x2
4
+
y2
3
=1
,假設(shè)存在直線l與直線l1x-y-2
2
=0
垂直,
設(shè)直線l的方程為y=-x+b…(8分)
設(shè)直線l與橢圓
x2
4
+
y2
3
=1
交點B(x1,y1),D(x2,y2
聯(lián)立得:
y=-x+b
3x2+4y2=12
,得7x2-8bx+4b2-12=0…(9分)
因為△=48(7-b2)>0,解得b2<7,且x1+x2=
8b
7
x1x2=
4b2-12
7
…(10分)
OD
OB
=x1x2+y1y2=x1x2+(b-x1)(b-x2)
=2x1x2-b(x1+x2)+b2
=
8b2-24
7
-
8b2
7
+b2
=
7b2-24
7
…(12分)
因為∠BOD為鈍角,所以
7b2-24
7
<0
且b≠0,
解得b2
24
7
且b≠0,滿足b2<7
-
2
42
7
<b<
2
42
7
且b≠0,
所以存在直線l滿足題意…(14分)
點評:本題考查圓的標準方程,考查代入法求軌跡方程,考查直線與橢圓的位置關(guān)系,考查向量知識的運用,解題的關(guān)鍵是直線與橢圓方程聯(lián)立,利用韋達定理進行求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉林二模)已知圓C1的圓心在坐標原點O,且恰好與直線l1x-y-2
2
=0
相切.
(1)求圓的標準方程;
(2)設(shè)點A為圓上一動點,AN⊥x軸于N,若動點Q滿足:
OQ
=m
OA
+(1-m)
ON
,(其中m為非零常數(shù)),試求動點Q的軌跡方程C2
(3)在(2)的結(jié)論下,當m=
3
2
時,得到曲線C,與l1垂直的直線l與曲線C交于B、D兩點,求△OBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:吉林省模擬題 題型:解答題

已知圓C1的圓心在坐標原點O,且恰好與直線l1:x-y-2=0相切,
(Ⅰ)求圓的標準方程;
(Ⅱ)設(shè)點A為圓上一動點,AN⊥x軸于N,若動點Q滿足,(其中m為非零常數(shù)),試求動點Q的軌跡方程C2
(Ⅲ)在(Ⅱ)的結(jié)論下,當時,得到曲線C,與l1垂直的直線l與曲線C交于B、D兩點,求△OBD面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:期末題 題型:解答題

已知圓C1的圓心在坐標原點O,且恰好與直線l1相切.
(Ⅰ)求圓的標準方程;
(Ⅱ)設(shè)點A(x0,y0)為圓上任意一點,AN⊥x軸于N,若動點Q滿足,(其中m+n=1,m,n≠0,m為常數(shù)),試求動點Q的軌跡方程C2
(Ⅲ)在(Ⅱ)的結(jié)論下,當時,得到曲線C,問是否存在與l1垂直的一條直線l與曲線C交于B、D兩點,且∠BOD為鈍角,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《圓與方程》2013年山西省高考數(shù)學(xué)一輪單元復(fù)習(xí)(解析版) 題型:解答題

已知圓C1的圓心在坐標原點O,且恰好與直線l1相切.
(Ⅰ)求圓的標準方程;
(Ⅱ)設(shè)點A(x,y)為圓上任意一點,AN⊥x軸于N,若動點Q滿足,(其中m+n=1,m,n≠0,m為常數(shù)),試求動點Q的軌跡方程C2
(Ⅲ)在(Ⅱ)的結(jié)論下,當時,得到曲線C,問是否存在與l1垂直的一條直線l與曲線C交于B、D兩點,且∠BOD為鈍角,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案