【題目】設(shè){an}是公比為q的等比數(shù)列.
(1)試推導(dǎo){an}的前n項(xiàng)和公式;
(2)設(shè)q≠1,證明數(shù)列{an+1}不是等比數(shù)列.

【答案】
(1)解:當(dāng)q=1時(shí),Sn=na1;

當(dāng)q≠0,1時(shí),由Sn=a1+a2+…+an,

得qSn=a1q+a2q+…+an1q+anq.

兩式錯(cuò)位相減得(1﹣q)Sn=a1+(a2﹣a1q)+…+(an﹣an1q)﹣anq,(*)

由等比數(shù)列的定義可得 ,

∴a2﹣a1q=a3﹣a2q=…=0.

∴(*)化為(1﹣q)Sn=a1﹣anq,

;


(2)證明:

用反證法:設(shè){an}是公比為q≠1的等比數(shù)列,數(shù)列{an+1}是等比數(shù)列.

①當(dāng)存在n∈N*,使得an+1=0成立時(shí),數(shù)列{an+1}不是等比數(shù)列.

②當(dāng)n∈N*(n≥2),使得an+1≠0成立時(shí),則 = = ,

化為(qn1﹣1)(q﹣1)=0,

∵q≠1,∴q﹣1≠0,qn1﹣1≠0,故矛盾.

綜上兩種情況:假設(shè)不成立,故原結(jié)論成立.


【解析】(1)分q=1與q≠1兩種情況討論,當(dāng)q≠1,0時(shí),利用錯(cuò)位相減法即可得出;(2)分①當(dāng)存在n∈N* , 使得an+1=0成立時(shí),顯然不成立;②當(dāng)n∈N*(n≥2),使得an+1≠0成立時(shí),使用反證法即可證明.
【考點(diǎn)精析】掌握等比數(shù)列的前n項(xiàng)和公式和等比關(guān)系的確定是解答本題的根本,需要知道前項(xiàng)和公式:;等比數(shù)列可以通過(guò)定義法、中項(xiàng)法、通項(xiàng)公式法、前n項(xiàng)和法進(jìn)行判斷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無(wú)限增加時(shí),多邊形的面積可無(wú)限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個(gè)程序框圖,則輸出的值為( )

(參考數(shù)據(jù):

A. 12 B. 24 C. 48 D. 96

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】環(huán)保組織隨機(jī)抽檢市內(nèi)某河流2015年內(nèi)100天的水質(zhì),檢測(cè)單位體積河水中重金屬含量,并根據(jù)抽檢數(shù)據(jù)繪制了如下圖所示的頻率分布直方圖.

(Ⅰ)求圖中的值;

(Ⅱ)假設(shè)某企業(yè)每天由重金屬污染造成的經(jīng)濟(jì)損失(單位:元)與單位體積河水中重金屬含量

的關(guān)系式為,若將頻率視為概率,在本年內(nèi)隨機(jī)抽取一天,試估計(jì)這天經(jīng)濟(jì)損失不超過(guò)500元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】按照?qǐng)D中的工序流程,從零件到成品最少要經(jīng)過(guò)_______道加工和檢驗(yàn)程序,導(dǎo)致廢品的產(chǎn)生有______種不同的情形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,內(nèi)角A,BC所對(duì)的邊分別為a,b,c,cosB

(Ⅰ)若c=2a,求的值;

(Ⅱ)若CB,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex , x∈R.
(1)若直線y=kx+1與f (x)的反函數(shù)g(x)=lnx的圖象相切,求實(shí)數(shù)k的值;
(2)設(shè)x>0,討論曲線y=f (x) 與曲線y=mx2(m>0)公共點(diǎn)的個(gè)數(shù).
(3)設(shè)a<b,比較 的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著國(guó)家二孩政策的全面放開(kāi),為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡(jiǎn)單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了位育齡婦女,結(jié)果如表.

非一線

一線

總計(jì)

愿生

不愿生

總計(jì)

附表:

算得,參照附表,得到的正確結(jié)論是( )

A. 在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“生育意愿與城市級(jí)別有關(guān)”

B. 以上的把握認(rèn)為“生育意愿與城市級(jí)別有關(guān)”

C. 在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“生育意愿與城市級(jí)別無(wú)關(guān)”

D. 以上的把握認(rèn)為“生育意愿與城市級(jí)別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫(xiě)出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知曲線和曲線交于兩點(diǎn)(、之間),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1:x-2y+3=0與直線l2:2x+3y-8=0的交點(diǎn)為M,

(1)求過(guò)點(diǎn)M且到點(diǎn)P(0,4)的距離為2的直線l的方程;

(2)求過(guò)點(diǎn)M且與直線l3:x+3y+1=0平行的直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案