設(shè)函數(shù)的集合P={f(x)=log2(x+a)+b|a=-
1
2
,0,
1
2
,1;b=-1,0,1}
,
平面上點(diǎn)的集合Q={(x,y)|x=-
1
2
,0,
1
2
,1;y=-1,0,1}
,
則在同一直角坐標(biāo)系中,P中函數(shù)f(x)的圖象恰好經(jīng)過Q中兩個(gè)點(diǎn)的函數(shù)的個(gè)數(shù)是( 。
A、4B、6C、8D、10
分析:把P中a和b的值代入f(x)=log2(x+a)+b中,所得函數(shù)f(x)的圖象恰好經(jīng)過Q中兩個(gè)點(diǎn)的函數(shù)的個(gè)數(shù),即可得到選項(xiàng).
解答:解:將數(shù)據(jù)代入驗(yàn)證知
當(dāng)a=
1
2
,b=0;
a=
1
2
,b=1;
a=1,b=1
a=0,b=0
a=0,b=1
a=1,b=-1
時(shí)滿足題意,
故選B.
點(diǎn)評(píng):本題主要考查了函數(shù)的概念、定義域、值域、圖象和對(duì)數(shù)函數(shù)的相關(guān)知識(shí)點(diǎn),對(duì)數(shù)學(xué)素養(yǎng)有較高要求,體現(xiàn)了對(duì)能力的考查,屬中檔題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:湖南省岳陽市第一中學(xué)2012屆高三上學(xué)期第四次月考數(shù)學(xué)理科試題 題型:013

設(shè)函數(shù)的集合P={f(x)=log2(x+a)+b|a=-,1,,1;b=-1,0,1},平面上點(diǎn)的集合Q={(x,y)|x=-,0,,1;y=-1,0,1},則在同一直角坐標(biāo)系中,P中函數(shù)f(x)的圖象恰好經(jīng)過Q中兩個(gè)點(diǎn)的函數(shù)的個(gè)數(shù)是

[  ]

A.4

B.6

C.8

D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江 題型:單選題

設(shè)函數(shù)的集合P={f(x)=log2(x+a)+b|a=-
1
2
,0,
1
2
,1;b=-1,0,1}
,
平面上點(diǎn)的集合Q={(x,y)|x=-
1
2
,0,
1
2
,1;y=-1,0,1}

則在同一直角坐標(biāo)系中,P中函數(shù)f(x)的圖象恰好經(jīng)過Q中兩個(gè)點(diǎn)的函數(shù)的個(gè)數(shù)是(  )
A.4B.6C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省高考真題 題型:單選題

設(shè)函數(shù)的集合P={f(x)=log2(x+a)+b|a=-,0,,1;b=-1,0,1},平面上點(diǎn)的集合A={(x,y)|x=
-,0,,1;y=-1,0,1},則在同一直角坐標(biāo)系中,P中函數(shù)f(x)的圖象恰好經(jīng)過Q中兩個(gè)點(diǎn)的函數(shù)的個(gè)數(shù)是
[     ]
A.4
B.6
C.8
D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:同步題 題型:單選題

設(shè)函數(shù)的集合P={f(x)=log2(x+a)+b|a=-,0,,1;b=-1,0,1},平面上點(diǎn)的集合Q={(x,y)|x=-,0,,1;y=-1,0,1},則在同一直角坐標(biāo)系中,P中函數(shù)f(x)的圖象恰好經(jīng)過Q中兩個(gè)點(diǎn)的函數(shù)的個(gè)數(shù)是
[     ]
A.4
B.6
C.8
D.10

查看答案和解析>>

同步練習(xí)冊答案