已知α∈(數(shù)學(xué)公式),且cos數(shù)學(xué)公式,則tanα


  1. A.
    數(shù)學(xué)公式
  2. B.
    -數(shù)學(xué)公式
  3. C.
    -2
  4. D.
    2
D
分析:利用同角三角函數(shù)關(guān)系,先求sinα,進(jìn)而可求tanα的值.
解答:∵α∈(),且cos,
∴sinα=-=-
∴tanα==2
故選D.
點(diǎn)評(píng):本題考查三角函數(shù)求值,正確運(yùn)用同角三角函數(shù)關(guān)系是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)O為△ABC外接圓的圓心,且精英家教網(wǎng)
OA
+
OB
+
CO
=
0
,則△ABC的內(nèi)角A等于( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn)O,焦點(diǎn)在x軸上,點(diǎn)A(-2
3
,0)
是其左頂點(diǎn),點(diǎn)C在橢圓上,且
AC
CO
=0
,|
AC
|=|
CO
|

(Ⅰ)求橢圓的方程;
(Ⅱ)若平行于CO的直線(xiàn)l和橢圓交于M,N兩個(gè)不同點(diǎn),求△CMN面積的最大值,并求此時(shí)直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱錐D-ABC的外接球的球心O滿(mǎn)足
OA
+
OB
=
CO
,且外接球的體積為16π,則該三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AB、BC、CD分別與⊙O相切于E、F、G,且AB∥CD,BO=6,CO=8,求OF的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知O為△ABC的外心,a,b,c分別是角A、B、C的對(duì)邊,且滿(mǎn)足
CO
AB
=
BO
CA

(1)推導(dǎo)出三邊a,b,c之間的關(guān)系式;
(2)求
tanA
tanB
+
tanA
tanC
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案