平面α的一個法向量為
n
=(1,-
3
,0)
,則y軸與平面α所成的角的大小為( 。
A.
π
6
B.
π
3
C.
π
4
D.
6
設(shè)y軸與平面α所成的角的大小為θ,
∵在y軸上的單位向量
j
=(0,1,0),
平面α的一個法向量為
n
=(1,-
3
,0)
,
∴sinθ=|cos<
j
,
n
>|=|
-
3
4
|=
3
2
,
∴θ=
π
3

故選:B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直四棱柱ABCD-A1B1C1D1中,平面A1BC⊥平面A1ABB1,AB=BC=2,AA1=2
2

(1)求證:BC⊥平面A1ABB1;
(2)求直線A1B與平面A1AC成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,點D在AB上.
(Ⅰ)求證:AC⊥B1C;
(Ⅱ)若D是AB中點,求證:AC1平面B1CD;
(Ⅲ)當(dāng)
BD
AB
=
1
3
時,求二面角B-CD-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,Q為AD的中點,PA=PD=AD=2.
(Ⅰ)求證:AD⊥平面PQB;
(Ⅱ)點M在線段PC上,PM=tPC,試確定t的值,使PA平面MQB;
(Ⅲ)若PA平面MQB,平面PAD⊥平面ABCD,求二面角M-BQ-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,側(cè)面PDC是邊長為2的正三角形,且與底面垂直,底面ABCD是梯形,ADBC且∠ADC=60°,BC=2AD=4.
(1)求證:DC⊥PA;
(2)在PB上是否存在一點M(不包含端點P,B)使得二面角C-AM-B為直二面角,若存在求出PM的長,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,四邊形ABCD為正方形,PA⊥面ABCD,且PA=AB=4,E為PD中點.
(1)證明:PB平面AEC;
(2)證明:平面PCD⊥平面PAD;
(3)求二面角E-AC-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐P-ABC中,已知PC⊥平面ABC,點C在平面PBA內(nèi)的射影D在直線PB上.
(1)求證:AB⊥平面PBC;
(2)設(shè)AB=BC,直線PA與平面ABC所成的角為45°,求異面直線AP與BC所成的角;
(3)在(2)的條件下,求二面角C-PA-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知為直線,為平面,則下列命題中不正確的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在?ABCD中,=a,=b,=3,M為BC的中點,則=________(用a,b表示).

查看答案和解析>>

同步練習(xí)冊答案