如圖,設(shè)P是單位圓和x軸正半軸的交點,M、N是單位圓上的兩點,O是坐標(biāo)原點,,∠PON=α,α∈[0,π],,則f(a)的范圍為   
【答案】分析:根據(jù)M、N是單位圓上的兩點,,∠PON=α,以及三角函數(shù)的定義寫出點N,M的坐標(biāo),求出 ,并代入 ,利用三角恒等變形,化簡為sin(α+),要求的范圍,只需求sin(α+),在區(qū)間[0,π]上的最值即可.
解答:解:∵M、N是單位圓上的兩點,,∠PON=α,
∴M( ,),N(cosα,sinα),
=( ,),=(cosα,sinα),
==
∵α∈[0,π],
∴α+∈[,],
∴sin(α+)∈
∴f(α)∈[1,2]
故答案為[1,2].
點評:此題是個中檔題.考查向量在幾何中的應(yīng)用,同時考查了三角函數(shù)的定義和向量的數(shù)量積的坐標(biāo)運算,三角函數(shù)在區(qū)間上的最值問題,體現(xiàn)了轉(zhuǎn)化的思想,考查了同學(xué)們觀察、推理以及創(chuàng)造性地分析問題、解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)P是單位圓和x軸正半軸的交點,M、N是單位圓上的兩點,O是坐標(biāo)原點,∠POM=
π
3
,∠PON=α,α∈[0,π),f(α)=
OM
ON
,則f(a)的范圍為(  )
A、(-
1
2
,1]
B、[-
1
2
,
1
2
)
C、[-
1
2
,1)
D、(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,設(shè)P是單位圓和x軸正半軸的交點,M、N是單位圓上的兩點,O是坐標(biāo)原點,∠POM=
π
3
,∠PON=α,α∈[0,π],f(α)=|
OM
+
ON
|
,則f(a)的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)P是單位圓和x軸正半軸的交點,M、N是單位圓上的兩點,O是坐標(biāo)原點,∠POM=
π
3
,∠PON=α,α∈[0,π)
(1)求點M的坐標(biāo);
(2)設(shè)f(α)=
OM
ON
,求f(α)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市閔行區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖,設(shè)P是單位圓和x軸正半軸的交點,M、N是單位圓上的兩點,O是坐標(biāo)原點,,∠PON=α,α∈[0,π],,則f(a)的范圍為   

查看答案和解析>>

同步練習(xí)冊答案