已知雙曲線
的兩焦點為
,過
作
軸的垂線交雙曲線于
兩點,若
內(nèi)切圓的半徑為
,則此雙曲線的離心率為( )
試題分析:由雙曲線的定義得:
,兩式相加得:
又在雙曲線中,
,所以
的周長為:
∵
內(nèi)切圓的半徑為
,∴
面積為:
,又
,∴
,
整理得:
,所以雙曲線的離心率為
點評在解題過程中要注意隱含條件的挖掘,注意應(yīng)用三角形面積的不同計算方法建立關(guān)于
的等式求離心率.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知雙曲線的右準(zhǔn)線為
,右焦點
,離心率
,求雙曲線方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
方程為
,左、右焦點分別是
,若橢圓
上的點
到
的距離和等于
.
(Ⅰ)寫出橢圓
的方程和焦點坐標(biāo);
(Ⅱ)設(shè)點
是橢圓
的動點,求線段
中點
的軌跡方程;
(Ⅲ)直線
過定點
,且與橢圓
交于不同的兩點
,若
為銳角(
為坐標(biāo)原點),求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)點
是以
為左、右焦點的雙曲線
左支上一點,且滿足
,則此雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
是橢圓
上的點,
、
是橢圓的兩個焦點,則
的值為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
過橢圓
的左焦點作直線交橢圓于
、
兩點,若存在直線使坐標(biāo)原點
恰好在以
為直徑的圓上,則橢圓的離心率取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在橢圓
中,
分別是其左右焦點,若
,則該橢圓離心率的取值范圍是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
的左、右焦點分別為
,離心率
,
.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過點
的直線
與該橢圓交于
兩點,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知直線
與拋物線
相交于
、
兩點,
為拋物線的焦點,若
,則
的值為
。
查看答案和解析>>