定義兩種運算a⊕b=ab,a?b=a+b,則函數(shù)f(x)=x?2-2⊕x是(  )
A.非奇非偶函數(shù)且在(-∞,+∞)上是減函數(shù)
B.非奇非偶函數(shù)且在(-∞,+∞)上是增函數(shù)
C.偶函數(shù)且在(-∞,+∞)上是增函數(shù)
D.奇函數(shù)且在(-∞,+∞)上是減函數(shù)
由定義可知f(x)=x?2-2⊕x=x+2-2x=-x+2.為單調(diào)遞減函數(shù).
所以f(-x)=x+2≠f(x),f(-x)≠-f(x),所以函數(shù)為非奇非偶函數(shù).
故選A.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

定義兩種運算a⊕b=ab,a?b=a+b,則函數(shù)f(x)=x?2-2⊕x是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•黃浦區(qū)一模)定義兩種運算a⊕b=
a2-b2
,a?b=|a-b|,則函數(shù)f(x)=
x?2-2
2⊕x
的解析式是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:黃浦區(qū)一模 題型:單選題

定義兩種運算a⊕b=
a2-b2
,a?b=|a-b|,則函數(shù)f(x)=
x?2-2
2⊕x
的解析式是( 。
A.f(x)=
x
4-x2
,x∈(-2,2)
B.f(x)=-
x
4-x2
,x∈(-2,2)
C.f(x)=
x
x2-4
,x∈(-∞,-2)∪(2,+∞)
D.f(x)=-
x
x2-4
,x∈(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省潮州市高一(上)期末數(shù)學試卷(解析版) 題型:選擇題

定義兩種運算a⊕b=ab,a?b=a+b,則函數(shù)f(x)=x?2-2⊕x是( )
A.非奇非偶函數(shù)且在(-∞,+∞)上是減函數(shù)
B.非奇非偶函數(shù)且在(-∞,+∞)上是增函數(shù)
C.偶函數(shù)且在(-∞,+∞)上是增函數(shù)
D.奇函數(shù)且在(-∞,+∞)上是減函數(shù)

查看答案和解析>>

同步練習冊答案